Contents

Part I Processes with Lumped Parameters

1 **Linear Processes Invariant in Time** .. 3
 1.1 The State Equations for Linear Processes Invariant
 in Time ... 3
 1.2 The Complete Taylor Series ... 4
 1.3 The Taylor Series with Odd Derivatives 4
 1.4 The Taylor Series with Even Derivatives 5
 1.5 The Complete Taylor Series-LIL 6
 1.6 The Taylor Series-LIL with Odd Derivatives 7
 1.7 The Taylor Series-LIL with Even Derivatives 8
 1.8 The Non Iterative Variant of Calculus of the Taylor Series ... 9
 1.9 The Starting of Calculus for the Taylor Series with Odd
 and Even Derivatives .. 10

2 **Time-Varying Linear Processes** ... 11
 2.1 The State Equations for Linear Processes Varying in Time 11
 2.2 The Complete Taylor Series ... 11
 2.3 The Taylor Series with Odd Derivatives 12
 2.4 The Taylor Series with Even Derivatives 12
 2.5 The Complete Taylor Series-LIL 13
 2.6 The Taylor Series-LIL with Odd Derivatives 13
 2.7 The Taylor Series-LIL with Even Derivatives 14
 2.8 The Non-Iterative Variant of Calculus of the Taylor Series ... 15

3 **Nonlinear Processes with Lumped Parameters** 17
 3.1 The State Equations for Nonlinear Processes 17
 3.2 The Complete Taylor Series-LIL 18
 3.3 The Taylor Series-LIL with Odd Derivatives 19
 3.4 The Taylor Series-LIL with Even Derivatives 20
Part II Processes with Distributed Parameters

4 Linear Processes with Distributed Parameters 25
 4.1 Partial Derivative Equations .. 25
 4.2 State Variables, Initial Conditions and Final Conditions 26
 4.3 The Complete Method of the Taylor Series
 for the Approximation of the Vector \(\mathbf{x}_k \):
 The Definition of the Matrix \(M_{pdx} \) 28
 4.4 The Taylor Series with Odd Derivatives
 for the Approximation of the Vector \(\mathbf{x}_k \). 33
 4.5 The Taylor Series with Even Derivatives
 for the Approximation of the Vector \(\mathbf{x}_k \). 34
 4.6 The Method of the Complete Taylor Series-LIL
 for the Approximation of the Vector \(\mathbf{x}_k \). 36
 4.7 References on the Initial and Starting Conditions,
 Associated with the Matrix \(M_{pdx} \) 39

5 Nonlinear Processes with Distributed Parameters 45

6 Truncated Errors of the Operator Matrix \(M_{pdx} \) 51
 6.1 Partial Derivatives Equations .. 51
 6.2 Pivot Element \((x_n, 0...0)\) of the Matrix \(M_{pdx} \) 58
 6.2.1 PDE I.2, with the Pivot Element \((x_{10})\) 58
 6.2.2 PDE I.3, with the Pivot Element \((x_{100})\) 58
 6.2.3 PDE I.4, with the Pivot Element \((x_{1000})\) 59
 6.2.4 PDE II.2, with the Pivot Element \(x_{20}\),
 in the Complete Variant 59
 6.2.5 PDE II.3, with the Pivot Element \(x_{200}\),
 in the Complete Version 59
 6.2.6 PDE II.4, with the Pivot Element \(x_{2000}\),
 in the Complete Version 60
 6.2.7 PDE III.2, with the Pivot Element \(x_{30}\),
 in the Complete Variant 60
 6.2.8 PDE IV.2, with the Pivot Element \(x_{40}\),
 in the Complete Version 61
 6.2.9 PDE II.2, with the Pivot Element \(x_{20}\),
 in the Incomplete Version 62
 6.3 Conclusions ... 63
Part III Simulation Examples

7 Modeling and Simulation Examples for Lumped Parameters Processes

7.1 Simplified Control System .. 67
7.2 Complete Control System .. 69
7.3 Time Varying Linear Process 72
7.4 Nonlinear Process, Defined by the Van der pol Equation 74
7.5 Nonlinear Process Defined by the Duffing Equation 75
7.6 Nonlinear Process Defined by the Riccati Equation 76
7.7 Nonlinear Process with Feedback 77
7.8 Case for Modeling-Simulation of the Asynchronous Motor,
Supplied with Variable Frequency Voltage 79

8 Modeling: Simulation Examples for Distributed Parameters Processes .. 83

8.1 The Performance Indicator of Numerical Integration 83
8.2 Control System of a Process, Modeled by PDE II.2 104
8.3 Control System of a Process, Modeled by PDE II.3 110
8.4 System of Two PDE II.2 ... 120
8.5 Comparison Between the Numerical Integration
of a ODE II Through Taylor Series and Taylor Series-LIL 125
8.6 Comparison Between the Numerical Integration
of a PDE II.2 Through Taylor Series and Taylor Series-LIL 129
8.7 PDE of the IVth Order with Four Variables 130

9 Case Studies for Establishing the M_{pdx} Matrix 135

9.1 Control System with PDE II.4 and PID Controller 135
9.1.1 Preliminaries ... 135
9.1.2 Establishing the M_{pdx} Matrix 139
9.1.3 Initial Conditions .. 143
9.1.4 The Calculus of x_T and x_{TPQR} 145
9.2 Control System with PDE II.3 and PID Controller 146
9.2.1 The Approached Problem 146
9.2.2 Establishing the Matrix M_{pdx} 150
9.2.3 Initial Conditions .. 153
9.2.4 The Calculus of x_T and x_{TPQR} 155
9.3 Control System with PDE II.2 and PID Controller 156
9.3.1 Preliminaries ... 156
9.3.2 Establishing the Matrix M_{pdx} 159
9.3.3 Initial Conditions .. 163
9.3.4 The Calculus of x_T and x_{TP} 164
9.4 Remarks .. 166
10 Partial Derivative Equations in the Cartesian Space 167
 10.1 An Approximation Variant for $\gamma_{0000}(t, p, q, r)$ 167
 10.2 Forms for $F_{0p}(p), F_{0q}(q), F_{0r}(r),$
 and $F_{0s}(s)$ [SR 22.24(25)] 170
 10.2.1 Polynomial Forms of the 3rd Order 170
 10.2.2 Gaussian Function, Modified [SR22.32 (33)] 171
 10.2.3 Multiple Exponential Forms [SR 22.28(29)] 172
 10.3 The Time Function $F_{0T}(t)$ 175
 10.4 The Coefficient (K_y) .. 176
 10.5 The Analogical Modeling and Numerical Simulation
 for PDE (t, s) .. 176
 10.6 Truncation Errors in the Numerical Simulation
 for PDE (t, s) .. 187
 10.7 Preliminaries Regarding the Introduction in Control Loops
 of Processes Modeled Through (PDE) 191
 10.7.1 The Control Loop 191
 10.7.2 The Analogical Modeling Through
 (M_{pdx}), Variant I 192
 10.7.3 The Analogical Modeling Through
 (M_{pdx}), Variant II 193
 10.7.4 Numerical Simulation Through M_{pdx}
 and Taylor Series 195
 10.8 Conclusions ... 197

11 Parallel, Serial and with Feed-Back Connections,
 for the Processes Modeled Through PDE 199
 11.1 The Components of the Interconnection Systems 199
 11.1.1 Referring to the $F_{00A}(t, s_A)$ and $F_{00B}(t, s_B)$
 Functions .. 204
 11.2 PDE Connected in Parallel 208
 11.2.1 Components of M_{pdxA} and M_{pdxB}
 for the Parallel Connection 209
 11.2.2 The Results Obtained by Parallel Connection 209
 11.3 PDE Connected in Series ... 214
 11.3.1 Components of M_{pdxA} and M_{pdxB}
 for the Serial Connection 215
 11.3.2 The Results Obtained for the Serial Connection 215
 11.4 PDE with Feed-Back Connection 219
 11.4.1 Components of M_{pdxA} and M_{pdxB}
 for the Feed-Back Connection 220
 11.4.2 The Results Obtained for the Feed-Back
 Connection .. 225
 11.5 Conclusions ... 227
12 Control Systems with Distributed and Lumped Parameters in the Cartesian Space: Cases Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>The General Control Structure</td>
<td>231</td>
</tr>
<tr>
<td>12.2</td>
<td>The Analogical Modeling Through M_{pdx}</td>
<td>233</td>
</tr>
<tr>
<td>12.3</td>
<td>The Numerical Simulation Through (M_{pdx}) and Taylor Series</td>
<td>239</td>
</tr>
<tr>
<td>12.4</td>
<td>Case Study 1: The Control of a Propagation Process</td>
<td>241</td>
</tr>
<tr>
<td>12.4.1</td>
<td>The Control Space</td>
<td>241</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Structure Parameters Within the System</td>
<td>241</td>
</tr>
<tr>
<td>12.4.3</td>
<td>The Behavior of the Technologic Process PDE II.2 in Open Loop</td>
<td>243</td>
</tr>
<tr>
<td>12.4.4</td>
<td>The Behavior of the Technologic Process PDE II.2 in Control Loop</td>
<td>245</td>
</tr>
<tr>
<td>12.5</td>
<td>Case Study 2. The Control of Railway Traction with a Diesel Engine</td>
<td>248</td>
</tr>
<tr>
<td>12.5.1</td>
<td>The Analogical Modeling of the Diesel Engine Through M_{pdx}</td>
<td>248</td>
</tr>
<tr>
<td>12.5.2</td>
<td>The Analogical Modeling of the Diesel Engine Through M_{pdx}, Included in a Railway Traction Structure, with the Control of the Speed of the Train</td>
<td>254</td>
</tr>
<tr>
<td>12.5.3</td>
<td>The Numerical Simulation Through M_{pdx} and Taylor Series</td>
<td>264</td>
</tr>
<tr>
<td>12.5.4</td>
<td>The Results Obtained by Software [Programs SR22.50(51); SR22.52(53); SR22.54(55)]</td>
<td>266</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusions</td>
<td>274</td>
</tr>
</tbody>
</table>

13 Numerical Simulation Using Partial Differential Equations, for Propagation and Control in Discontinuous Structures Processes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>The Propagation in Successive Zones</td>
<td>283</td>
</tr>
<tr>
<td>13.2</td>
<td>The Propagation Parameters</td>
<td>283</td>
</tr>
<tr>
<td>13.3</td>
<td>Formal Aspects of the Discontinuous Propagation</td>
<td>285</td>
</tr>
<tr>
<td>13.4</td>
<td>The Analogical Model of the Proposed Control Scheme</td>
<td>287</td>
</tr>
<tr>
<td>13.5</td>
<td>The Numerical Simulation Through M_{pdx} and Taylor Series</td>
<td>289</td>
</tr>
<tr>
<td>13.6</td>
<td>Case Studies Simulated on the Computer</td>
<td>291</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Determination of the Propagation Parameters</td>
<td>291</td>
</tr>
<tr>
<td>13.6.2</td>
<td>The Propagation Process in Open Circuit</td>
<td>293</td>
</tr>
<tr>
<td>13.6.3</td>
<td>The Propagation Process with Stabilizing Control</td>
<td>294</td>
</tr>
<tr>
<td>13.7</td>
<td>Conclusions</td>
<td>297</td>
</tr>
</tbody>
</table>
Numerical Simulation of Distributed Parameter Processes
Colosi, T.; Abrudean, M.-I.; Unguresan, M.-L.; Muresan, V.
2013, XX, 343 p., Hardcover
ISBN: 978-3-319-00013-8