Contents

1 Introduction ... 1
1.1 Discovery of Two-Dimensional Carbon Nanostructures 1
1.2 Brief Description of Carbon Nanowalls 2
1.3 Research on Carbon Nanowalls 3
References .. 5

2 Preparation Methods ... 9
2.1 Microwave Plasma Enhanced Chemical Vapor Deposition 10
2.2 Inductively Coupled Plasma Enhanced Chemical Vapor Deposition ... 13
2.3 Capacitively Coupled Plasma Enhanced Chemical Vapor Deposition with Radical Injection 16
2.3.1 RF Plasma-Enhanced CVD with H Radical Injection 17
2.3.2 VHF Plasma-Enhanced CVD with H Radical Injection 19
2.4 Electron-Beam-Excited Plasma Enhanced Chemical Vapor Deposition ... 20
2.5 Hot Filament Chemical Vapor Deposition 23
2.6 Atmospheric Pressure Plasma .. 25
2.7 Sputtering .. 26
References .. 28

3 Physics of Carbon Nanowalls ... 31
3.1 Characterization of Carbon Nanowalls 31
3.1.1 SEM and TEM Observation 31
3.1.2 Raman Spectra of Carbon Nanowalls 34
3.1.3 Grazing Incidence In-Plane X-ray Diffraction 37
3.2 Electrical Properties of Carbon Nanowalls 39
3.2.1 Field Emission Properties of Carbon Nanowalls 39
3.2.2 Electrical Conduction of Carbon Nanowalls
3.2.3 Electrode for Electrochemistry
References

4 Fabrication of Carbon Nanowalls Using Radical Injection

4.1 Concept of Radical-Controlled Processing
4.2 RF Plasma-Enhanced CVD with H Radical Injection
 4.2.1 Experimental Setup for RF Plasma-Enhanced CVD
 with H Radical Injection
 4.2.2 Measurement of Radical Densities in the Capacitively
 Coupled Plasma Region
 4.2.3 Effect of Carbon Source Gases and H Radicals
 on Carbon Nanowall Growth
 4.2.4 Fabrication of Straight and Aligned Carbon Nanowalls
 with Regular Spacing
4.3 VHF Plasma-Enhanced CVD with H Radical Injection
 4.3.1 Experimental Setup of VHF Plasma-Enhanced
 CVD with H Radical Injection
 4.3.2 Chamber Cleaning for Carbon Nanowall Growth
 with High Reproducibility
 4.3.3 Electrical Conduction Control of Carbon Nanowalls
 4.3.4 Fabrication of Monolithic Self-Sustaining
 Graphene Sheets
References

5 Growth Mechanism of Carbon Nanowalls

5.1 Measurement of Radical Densities in the Plasma Used
 for the Fabrication of Carbon Nanowalls
 5.1.1 Radicals in Microwave Plasma-Enhanced CVD
 with CH₄/H₂ Mixture
 5.1.2 Radicals in Fluorocarbon Plasma with H Radical
 Injection
 5.1.3 Discussion
5.2 Steady-State Growth of Carbon Nanowalls
 5.2.1 RF Plasma-Enhanced CVD with H Radical Injection
 Employing C₂F₆/H₂ System
 5.2.2 Inductively Coupled Plasma Enhanced CVD Employing
 CH₄/Ar System
 5.2.3 Electron-Beam-Excited Plasma Enhanced CVD
 Employing CH₄/H₂ System
 5.2.4 VHF Plasma-Enhanced CVD with H Radical Injection
 Employing C₂F₆/H₂ System
 5.2.5 Discussion
5.3 Nucleation of Carbon Nanowalls .. 97
 5.3.1 Investigation of Nucleation Stage of Carbon
 Nanowall Growth Employing C₂F₆/H₂ 97
 5.3.2 Comparison of Carbon Nanowall Growth Employing
 C₂F₆/H₂ with and Without O₂ Gas Addition 101
 5.3.3 Nucleation Model of Carbon Nanowalls 105
5.4 Nucleation Mechanism of Carbon Nanowall Growth Under
 Ion Irradiation .. 107
 5.4.1 Carbon Nanowall Formation Using Multi-Beam CVD
 Technique ... 107
 5.4.2 Effect of Ions on the Growth of Carbon Nanowalls 110
5.5 Area-Selective Growth of Carbon Nanowalls 112
References ... 114

6 Field Emission .. 117
 6.1 Field Emission Properties of As-Grown Carbon Nanowalls 117
 6.2 Surface Treatment for Improvement of Field Emission Properties 122
 6.2.1 Surface Coating ... 123
 6.2.2 Metal/Carbon Nanowall Composites 123
 6.2.3 N₂ Plasma Treatment ... 125
References ... 127

7 Using Carbon Nanowalls as Templates 131
 7.1 Fabrication of Nanostructured Materials Using Carbon
 Nanowalls as Templates .. 131
 7.1.1 Decoration of Carbon Nanowalls 131
 7.1.2 Fabrication of Nanostructured Materials on Carbon
 Nanowall Templates .. 132
 7.2 Synthesis of Pt Nanoparticles on Carbon Nanowall Surface
 Using Supercritical Fluid Chemical Deposition 138
 7.2.1 Introduction .. 138
 7.2.2 Synthesis of Pt Nanoparticles by Plating 139
 7.2.3 Synthesis of Pt Nanoparticles by Sputtering 140
 7.2.4 Supercritical Fluids .. 141
 7.2.5 Experimental Procedure of Metal-Organic
 Chemical Fluid Deposition Using Supercritical
 Carbon Dioxide .. 143
 7.2.6 Characterization of Platinum Nanoparticles Formed
 by Metal-Organic Chemical Fluid Deposition Using
 Supercritical Carbon Dioxide 144
 7.2.7 Mechanism of Platinum Nanoparticle Formation
 by Metal-Organic Chemical Fluid Deposition Using
 Supercritical Carbon Dioxide 148
7.3 Pattern Transfer from Carbon Nanowall into SiO₂ Film 151
References ... 155

8 Future Perspective for Emerging Applications Using
Carbon Nanowalls .. 159
References ... 161
Carbon Nanowalls
Synthesis and Emerging Applications
Hiramatsu, M.; Hori, M.
2010, X, 161 p., Hardcover
ISBN: 978-3-211-99717-8