Advances

Advances in imaging low-grade gliomas. STEPHEN J. PRICE, Academic Neurosurgery Division, Department of Clinical Neurosciences, Addenbrooke’s Hospital, Cambridge, UK

Abstract .. 2
Introduction .. 2
Conventional imaging 3
- Computed tomography (CT) imaging 3
- Magnetic resonance imaging 3
- Contrast enhancement in low-grade glioma 4
Assessment of tumour margins with conventional MR 5
Assessment of low-grade glioma growth 6
Advanced MRI techniques 6
- Perfusion MRI ... 6
 - Differentiating high from low-grade gliomas 7
 - Perfusion imaging as a prognostic marker in low-grade gliomas 9
 - Perfusion imaging at recurrence: differentiating radiation necrosis from recurrent tumour 10
- Diffusion-weighted and diffusion tensor MRI 10
 - Grading gliomas using diffusion-weighted imaging 10
 - Diffusion tensor imaging in low-grade gliomas 12
Magnetic resonance spectroscopy 12
- MR spectroscopy to differentiate high and low-grade gliomas 12
- Differentiating low-grade gliomas from other conditions 14
- Identification of low-grade glioma subtypes with MR spectroscopy 15
- MRS to detect low-grade glioma transformation 15
Molecular neuropathology of low-grade gliomas and its clinical impact.
M. J. RIEMENSCHNEIDER and G. REIFENBERGER, Department of Neuropathology, Heinrich-Heine-University, Duesseldorf, Germany

Abstract. ... 36
Abbreviations .. 36
WHO classification and grading of low-grade gliomas 37
Diffuse astrocytoma (WHO grade II) .. 38
 Epidemiological, histological and immunohistochemical features 38
 Molecular genetics .. 39
Pleomorphic xantoastrocytoma (WHO grade II) 40
 Epidemiological, histological and immunohistochemical features 40
 Molecular genetics .. 41
Pilocytic astrocytoma (WHO grade I) ... 41
 Epidemiological, histological and immunohistochemical features 41
 Molecular genetics .. 42
Subependymal giant cell astrocytoma (WHO grade I) 43
 Epidemiological, histological and immunohistochemical features 43
 Molecular genetics .. 43
Oligodendrogliaoma (WHO grade II) .. 44
 Epidemiological, histological and immunohistochemical features 44
 Molecular genetics .. 45
Oligoastrocytoma (WHO grade II) ... 47
 Epidemiological, histological and immunohistochemical features 47
 Molecular genetics .. 47
Ependymoma (WHO grade II) .. 48
 Epidemiological, histological and immunohistochemical features 48
 Molecular genetics .. 49
Myxopapillary ependymoma (WHO grade I) 50
 Epidemiological, histological and immunohistochemical features 50
 Molecular genetics .. 50
What is the place of conservative management for adult supratentorial low-grade glioma? I. R. Whittle, Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK

Abstract. .. 65
Introduction .. 66
The role of conservative management in an initial “wait and watch” strategy ... 68
What contribution have serial MRIs shown in patients with suspected LGG undergoing a watch and wait policy? 70
Is patient outcome compromised by a watch and wait policy? 73
Conservative management of LGGs after surgery but before radiotherapy and/or chemotherapy 75
Conclusion. .. 75
Potential conflicts of interest .. 76
References .. 76

Seizures in patients with low-grade gliomas – incidence, pathogenesis, surgical management, and pharmacotherapy. D. Kurzwelly, U. Herrlinger, and M. Simon, 1 Schwerpunkt Klinische Neuroonkologie, Neurologische Klinik, Universitätskliniken Bonn, Bonn, Germany, 2 Neurochirurgische Klinik, Universitätskliniken Bonn, Bonn, Germany

Abstract. .. 82
Introduction .. 82
Tumor-related seizures: semiology and classification 83
Tumor-related seizures: the role of histology and tumor location 85
Histology ... 85
Tumor location ... 86
Intraoperative and postoperative seizures 88
Intraoperative and early postoperative seizures 88
Late postoperative seizures ... 89
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenesis of tumor-related seizures</td>
<td>89</td>
</tr>
<tr>
<td>Surgical treatment for tumor-related seizures</td>
<td>90</td>
</tr>
<tr>
<td>Epilepsy in low-grade glioma (LGG) patients: a good indication for surgical treatment</td>
<td>90</td>
</tr>
<tr>
<td>Epilepsy control after “tumor surgery”</td>
<td>92</td>
</tr>
<tr>
<td>“Epilepsy surgery” for tumor-related drug-resistant epilepsy</td>
<td>92</td>
</tr>
<tr>
<td>“Epilepsy surgery” for tumor-related drug-resistant epilepsy: how to define the epileptogenic zone</td>
<td>94</td>
</tr>
<tr>
<td>Effects of cranial irradiation and chemotherapy on tumor-related epilepsy</td>
<td>96</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>96</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>97</td>
</tr>
<tr>
<td>Pharmacological treatment</td>
<td>97</td>
</tr>
<tr>
<td>Who should be treated with anticonvulsants, and how long?</td>
<td>97</td>
</tr>
<tr>
<td>Common antiepileptic drugs (AEDs) and recommendations for first line therapy</td>
<td>98</td>
</tr>
<tr>
<td>Toxicity and side-effects of anticonvulsant drugs</td>
<td>102</td>
</tr>
<tr>
<td>Second line therapy and mechanisms of pharmacoresistance</td>
<td>103</td>
</tr>
<tr>
<td>Key facts and conclusion</td>
<td>104</td>
</tr>
<tr>
<td>References</td>
<td>104</td>
</tr>
</tbody>
</table>

Present day’s standards in microsurgery of low-grade gliomas. L. Bello, E. Fava, G. CARRABBA, C. PAPAGNO, and S. M. GAINI, Neurosurgery, Department of Neurological Sciences, Università degli Studi di Milano, Milano, Italy

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>113</td>
</tr>
<tr>
<td>Introduction</td>
<td>114</td>
</tr>
<tr>
<td>Rationale and indications</td>
<td>116</td>
</tr>
<tr>
<td>The brain mapping technique</td>
<td>118</td>
</tr>
<tr>
<td>Pre-operative protocol</td>
<td>119</td>
</tr>
<tr>
<td>Neuropsychology</td>
<td>119</td>
</tr>
<tr>
<td>Imaging and neuroradiology</td>
<td>122</td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>123</td>
</tr>
<tr>
<td>Intraoperative protocol</td>
<td>124</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>124</td>
</tr>
<tr>
<td>Neurophysiology</td>
<td>124</td>
</tr>
<tr>
<td>Results of the mapping or monitoring procedures</td>
<td>129</td>
</tr>
<tr>
<td>Intraoperative imaging</td>
<td>134</td>
</tr>
<tr>
<td>Immediate post operative course</td>
<td>140</td>
</tr>
<tr>
<td>Functional results of surgery</td>
<td>140</td>
</tr>
<tr>
<td>Oncological results of surgery</td>
<td>140</td>
</tr>
<tr>
<td>Strategy for large, diffuse or recurrent tumors; the concept of brain plasticity</td>
<td>144</td>
</tr>
<tr>
<td>Conclusions and proposal for the future</td>
<td>147</td>
</tr>
<tr>
<td>References</td>
<td>148</td>
</tr>
</tbody>
</table>
Is there a place for radiotherapy in low-grade gliomas? B. G. BAUMERT¹ and R. STUPP², ¹Department of Radiation-Oncology (MAASTRO), Grow (School for Oncology and Developmental Biology), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands, ²Department of Oncology-Haematology, Hospitals Riveria-Chablais, Vevey and Department of Neurosurgery, University of Lausanne (CHUV), Lausanne, Switzerland

Abstract .. 159
Introduction ... 160
Indications for irradiation (prognostic factors) .. 161
Timing of radiotherapy 163
Radiation technique ... 165
Radiotherapy dose .. 168
Toxicity of radiotherapy 169
Chemotherapy and radiotherapy 172
Conclusion ... 173
Future ... 174
Summary of important facts 176
References ... 176

The place of interstitial brachytherapy and radiosurgery for low-grade gliomas.
F. W. KRETH¹, N. THON¹, A. SIEFERT², and J. C. TONN¹, ¹Department of Neurosurgery, University Hospital Grosshadern, University of Munich, Munich, Germany, ²Department of Radiotherapy and Radiooncology, University Hospital Grosshadern, University of Munich, Munich, Germany

Abstract ... 184
Introduction ... 184
Stereotactic Iodine-125 brachytherapy .. 185
 Rationale for interstitial irradiation .. 185
 Role of stereotactic biopsy .. 186
 Indication, technique, implants and dosimetry 188
 Imaging changes after stereotactic brachytherapy 190
 Stereotactic brachytherapy in adult glioma patients 191
 Stereotactic brachytherapy in paediatric glioma patients 194
 Radiogenic complications .. 196
 Risk estimation of stereotactic brachytherapy 196
 Microsurgery in combination with stereotactic brachytherapy 198
Radiosurgery ... 200
 Background .. 200
 Rationale for radiosurgery .. 200
 Risk factors of radiosurgery .. 201
Radiosurgery in low-grade gliomas .. 201
Summary of important facts 203
Health-related quality of life aspects in patients with low-grade glioma. M. Kle
Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands

Abstract

Introduction

Health-related quality of life assessment

Treatment and quality of life in low-grade glioma

Brain tumor effects on health-related quality of life

Surgery effects on health-related quality of life

Radiotherapy effects on health-related quality of life

Effects of medical therapy on health-related quality of life

Antiepileptic drugs

Chemotherapy

Steroids

Effects of mood disorders on health-related quality of life

Conclusion

References

Author index

Subject index

Listed in PubMed
Advances and Technical Standards in Neurosurgery,
Vol. 35
Low-Grade Gliomas. Edited by J. Schramm
2010, XIII, 261 p., Hardcover
ISBN: 978-3-211-99480-1