Contents

Introduction

1 Some Riemannian Geometry

1.1 Preliminaries

1.1.1 Moving frames and the first structure equations

1.1.2 Covariant derivative of tensor fields

1.1.3 Meaning of the first structure equations

1.1.4 Curvature: the second structure equations

1.1.5 Einstein manifolds and Schur’s Theorem

1.2 Comparison theorems

1.2.1 Ricci identities

1.2.2 Cut locus and regularity of the distance function

1.2.3 The Laplacian comparison theorem

1.2.4 The Bishop-Gromov comparison theorem

1.2.5 The Hessian comparison theorem

1.3 Some formulas for immersed submanifolds

2 Pointwise conformal metrics

2.1 The Yamabe equation

2.1.1 The derivation of the Yamabe equation

2.1.2 The Kazdan-Warner obstruction

2.1.3 The Weyl and Cotton tensors

2.2 Some applications in the compact case

2.2.1 A rigidity result of Obata

2.2.2 A result by M. F. Bidaut-Véron and L. Véron

2.2.3 A version of Theorem 2.12 on manifolds with boundary

2.2.4 A rigidity result of Escobar

3 General nonexistence results

3.1 Some spectral considerations

3.1.1 The main nonexistence result

3.2 The endpoint case $K = -1$ and the Poisson equation
A priori estimates
- 4.1 Estimates from below 105
- 4.2 Estimates from above 111
- 4.3 Sharpness of the previous results 115
- 4.4 Some further estimates 117
- 4.5 Nonexistence results for the Yamabe problem 121

Uniqueness
- 5.1 A sharp integral condition 127
- 5.2 A remark on the asymptotic behaviour of solutions: examples in \(\mathbb{R}^m \) and \(\mathbb{H}^m \) 130
- 5.3 Uniqueness via the weak maximum principle 132
 - 5.3.1 A useful form of the weak maximum principle 133
 - 5.3.2 A comparison result 140
 - 5.3.3 Uniqueness of ground states 143
- 5.4 Some geometric applications and further uniqueness 146
 - 5.4.1 Conformal diffeomorphisms 146
 - 5.4.2 Uniqueness for the Yamabe problem 148
 - 5.4.3 An \(L^\infty \) a priori estimate 149

Existence
- 6.1 A general procedure 157
 - 6.1.1 Another comparison result 158
 - 6.1.2 More basic spectral theory and a result of Li, Tam and Yang 158
 - 6.1.3 Two useful lemmas 162
 - 6.1.4 Existence of a maximal solution 165
- 6.2 Subsolutions and existence 166
 - 6.2.1 Existence with \(\lambda_1^p(M) < 0 \) 166
 - 6.2.2 \(\lambda_1^p(M) < 0 \): some sufficient conditions ... 170
 - 6.2.3 A more general case 177
- 6.3 Global sub- and supersolutions 180
- 6.4 The case of the Yamabe problem 188
- 6.5 Appendix: the Monotone Iteration Scheme 191

Some special cases
- 7.1 A nonexistence result 197
 - 7.1.1 A Rellich-Pohozaev formula 207
 - 7.1.2 A nonexistence result for hyperbolic space 211
 - 7.1.3 An integral obstruction 219
- 7.2 Special symmetries and existence 221
- 7.3 The case of Euclidean space and further results 227
 - 7.3.1 A linear comparison result 227
Yamabe-type Equations on Complete, Noncompact Manifolds
Mastrolia, P.; Rigoli, M.; Setti, A.G.
2012, VIII, 260 p., Hardcover
ISBN: 978-3-0348-0375-5
A product of Birkhäuser Basel