Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction</td>
<td>xiii</td>
</tr>
<tr>
<td>Notation</td>
<td>xix</td>
</tr>
<tr>
<td>1 Elementary properties of holomorphic functions</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Definition and first properties</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The maximum principle</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Contour integrals</td>
<td>8</td>
</tr>
<tr>
<td>1.4 The Cauchy integral theorem</td>
<td>11</td>
</tr>
<tr>
<td>1.5 The Cauchy formula</td>
<td>12</td>
</tr>
<tr>
<td>1.6 The Hahn-Banach criterion</td>
<td>15</td>
</tr>
<tr>
<td>1.7 A criterion for the holomorphy of operator functions</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Power series</td>
<td>19</td>
</tr>
<tr>
<td>1.9 Laurent series</td>
<td>23</td>
</tr>
<tr>
<td>1.10 Isolated singularities</td>
<td>25</td>
</tr>
<tr>
<td>1.11 Comments</td>
<td>28</td>
</tr>
<tr>
<td>2 Solution of $\overline{\partial} u = f$ and applications</td>
<td>29</td>
</tr>
<tr>
<td>2.1 The Pompejju formula for solutions of $\overline{\partial} u = f$ on compact sets</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Runge approximation</td>
<td>37</td>
</tr>
<tr>
<td>2.3 Solution of $\overline{\partial} u = f$ on open sets</td>
<td>41</td>
</tr>
<tr>
<td>2.4 O^E-cocycles and the Mittag-Leffler theorem</td>
<td>43</td>
</tr>
<tr>
<td>2.5 Runge approximation for invertible scalar functions and the Weierstrass product theorem</td>
<td>44</td>
</tr>
<tr>
<td>2.6 O^E-cocycles with prescribed zeros and a stronger version of the Mittag-Leffler theorem</td>
<td>52</td>
</tr>
<tr>
<td>2.7 Generalization of the Weierstrass product theorem</td>
<td>54</td>
</tr>
<tr>
<td>2.8 Comments</td>
<td>58</td>
</tr>
</tbody>
</table>
Contents

6.4 Holomorphic families of subspaces 185
6.5 Example: A holomorphic family of subspaces with jumping
isomorphism type ... 201
6.6 Injective families .. 203
6.7 Shubin families .. 204
6.8 Complemented families ... 206
6.9 Finite dimensional and finite codimensional families 209
6.10 One-sided and generalized invertible holomorphic operator
functions ... 211
6.11 Example: A globally non-trivial complemented holomorphic family
of subspaces .. 214
6.12 Comments ... 216

7 Plemelj-Muschelishvili factorization 219
7.1 Definitions and first remarks about factorization 220
7.2 The algebra of Wiener functions and other splitting \mathcal{R}-algebras 222
7.3 Hölder continuous and differentiable functions 230
7.4 Reduction of the factorization problem to functions, holomorphic
and invertible on \mathbb{C}^* .. 237
7.5 Factorization of holomorphic functions close to the unit 240
7.6 Reduction of the factorization problem to polynomials in z and $1/z$ 240
7.7 The finite dimensional case ... 242
7.8 Factorization of $\mathcal{G}^\infty(E)$-valued functions 245
7.9 The filtration of an operator function with respect to a contour 251
7.10 A general criterion for the existence of factorizations 259
7.11 Comments ... 267

8 Wiener-Hopf operators, Toeplitz operators and factorization 269
8.1 Holomorphic operator functions 269
8.2 Factorization of $\mathcal{G}^\omega(E)$-valued functions 273
8.3 The space $\mathcal{L}^2(\Gamma, H)$... 276
8.4 Operator functions with values acting in a Hilbert space 287
8.5 Functions close to the unit operator or with positive real part 291
8.6 Block Töplitz operators .. 297
8.7 The Fourier transform of $\mathcal{L}^1(\mathbb{R}, E)$ 305
8.8 The Fourier isometry U of $\mathcal{L}^2(\mathbb{R}, H)$ 313
8.9 The isometry V from $\mathcal{L}^2(T, H)$ onto $\mathcal{L}^2(\mathbb{R}, H)$ 317
8.10 The algebra of operator functions $L(H) \oplus \mathcal{L}^1(\mathbb{R}, L(H))$ 320
8.11 Factorization with respect to the real line 324
8.12 Wiener-Hopf integral operators in $\mathcal{L}^2([0, \infty[, H)$ 325
8.13 An example .. 338
8.14 Comments ... 340
Contents

9 Multiplicative cocycles with restrictions (F-cocycles) 343
 9.1 F-cocycles .. 343
 9.2 The main results on cocycles with restrictions. Formulation and reduction to $O_{D,Z,m}$... 346
 9.3 The Cartan lemma with restrictions 347
 9.4 Splitting over simply connected open sets after shrinking 352
 9.5 Runge approximation on simply connected open sets 354
 9.6 Splitting over simply connected open sets without shrinking 358
 9.7 Runge approximation. The general case 362
 9.8 The Oka-Grauert principle .. 365
 9.9 Comments .. 367

10 Generalized interpolation problems 369
 10.1 Weierstrass theorems .. 369
 10.2 Right- and two-sided Weierstrass theorems 371
 10.3 Weierstrass theorems for $G^\infty(E)$- and $G^\omega(E)$-valued functions ... 374
 10.4 Holomorphic $G^\infty(E)$-valued functions with given principal parts of the inverse ... 377
 10.5 Comments .. 378

11 Holomorphic equivalence, linearization and diagonalization 379
 11.1 Introductory remarks .. 379
 11.2 Linearization by extension and equivalence 380
 11.3 Local equivalence .. 386
 11.4 A theorem on local and global equivalence 392
 11.5 The finite dimensional case .. 394
 11.6 Local and global equivalence for finite meromorphic Fredholm functions ... 399
 11.7 Global diagonalization of finite meromorphic Fredholm functions 406
 11.8 Comments .. 411

Bibliography 413

Index 419
Holomorphic Operator Functions of One Variable and Applications
Methods from Complex Analysis in Several Variables
Gohberg, I.; Leiterer, J.
2009, XX, 424 p., Hardcover
ISBN: 978-3-0346-0125-2
A product of Birkhäuser Basel