Contents

Foreword ........................................... xi
1 Introduction ....................................... 1

Part I  Pseudoanalytic Function Theory and
Second-order Elliptic Equations

2 Definitions and Results from Bers’ Theory
  2.1 Generating pairs and differentiation ................. 9
  2.2 Pseudoanalytic functions ............................. 11
  2.3 Derivatives and integrals of pseudoanalytic functions .... 13
      2.3.1 Equivalent generating pairs ......................... 13
      2.3.2 Vekua’s equation for \((F,G)\)-derivatives ......... 14
      2.3.3 Integration ........................................ 16

3 Solutions of Second-order Elliptic Equations as Real Components
   of Complex Pseudoanalytic Functions
  3.1 Factorization of the stationary Schrödinger operator .......... 21
  3.2 Factorization of the operator \(\text{div } p \text{ grad } + q\) .......... 23
  3.3 Conjugate metaharmonic functions ........................ 27
  3.4 The main Vekua equation ............................... 29
  3.5 Cauchy’s integral theorem for the Schrödinger equation ....... 31
  3.6 \(p\)-analytic functions ................................. 32

4 Formal Powers
  4.1 Definition ........................................... 35
  4.2 An important special case ............................. 37
  4.3 Similarity principle .................................. 38
  4.4 Taylor series in formal powers .......................... 41
  4.5 The Runge theorem .................................. 43
  4.6 Complete systems of solutions for second-order equations .... 43
  4.7 A remark on orthogonal coordinate systems in a plane .......... 45
4.8 Explicit construction of a generating sequence . . . . . . . . . . . 46
4.9 Explicit construction of complete systems of solutions
of second-order elliptic equations . . . . . . . . . . . . . . . . . . 50
  4.9.1 Explicit construction of complete systems of solutions
  for a stationary Schrödinger equation . . . . . . . . . . . . 51
  4.9.2 Complete systems of solutions for the
  conductivity equation . . . . . . . . . . . . . . . . . . . 51
4.10 Numerical solution of boundary value problems . . . . . . . . . . 52

5 Cauchy’s Integral Formula
  5.1 Preliminary information on the Cauchy integral formula
  for pseudoanalytic functions..................... 55
  5.2 Relation between the main Vekua equation and the
  system describing $p$-analytic functions . . . . . . . . . . . 57
  5.3 The transplant operator ....................... 58
  5.4 Cauchy integral formulas for $x^k$-analytic functions . . . . . . 60

6 Complex Riccati Equation
  6.1 Preliminary notes . . . . . . . . . . . . . . . . . . . . . . . . . 65
  6.2 The two-dimensional stationary Schrödinger equation and
  the complex Riccati equation .................... 67
  6.3 Generalizations of classical theorems ................ 69
  6.4 Cauchy’s integral theorem ...................... 71

Part II Applications to Sturm-Liouville Theory

7 A Representation for Solutions of the Sturm-Liouville Equation
  7.1 Solving the one-dimensional Schrödinger equation ............ 75
  7.2 The “+”-case . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
  7.3 Two sets of Taylor coefficients . . . . . . . . . . . . . . . . 80
  7.4 Solution of the one-dimensional Schrödinger equation . . . . . 81
  7.5 Validating the result . . . . . . . . . . . . . . . . . . . . . . 83
  7.6 The “−” case . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
  7.7 Complex potential . . . . . . . . . . . . . . . . . . . . . . . 85
  7.8 Solution of the Sturm-Liouville equation . . . . . . . . . . . . 86
  7.9 Numerical method for solving Sturm-Liouville equations . . . . 90

8 Spectral Problems and Darboux Transformation
  8.1 Sturm-Liouville problem as a problem of finding zeros
  of an analytic function . . . . . . . . . . . . . . . . . . . 93
  8.1.1 Sturm-Liouville problems with spectral parameter
  dependent boundary conditions . . . . . . . . . . . . . . . 95
8.2 Numerical method for solving Sturm-Liouville problems . 96  
8.3 A remark on the Darboux transformation . 98  

Part III Applications to Real First-order Systems  

9 Beltrami Fields  
  9.1 Description of the result . 103  
  9.2 Reduction of (9.1) to a Vekua equation . 104  
  9.3 Solution in the case when $\alpha$ is a function of one  
    Cartesian variable . 105  

10 Static Maxwell System in Axially Symmetric Inhomogeneous Media  
  10.1 Meridional and transverse fields . 111  
  10.2 Reduction of the static Maxwell system to  
    $p$-analytic functions . 112  
    10.2.1 The meridional case . 112  
    10.2.2 The transverse case . 112  
  10.3 Construction of formal powers . 113  
    10.3.1 Formal powers in the meridional case . 113  
    10.3.2 Formal powers in the transverse case . 114  

Part IV Hyperbolic Pseudoanalytic Functions  

11 Hyperbolic Numbers and Analytic Functions  

12 Hyperbolic Pseudoanalytic Functions  
  12.1 Differential operators . 125  
  12.2 Hyperbolic pseudoanalytic function theory . 126  
  12.3 Generating sequences . 130  

13 Relationship between Hyperbolic Pseudoanalytic Functions  
  and Solutions of the Klein-Gordon Equation  
  13.1 Factorization of the Klein-Gordon equation . 133  
  13.2 The main hyperbolic Vekua equation . 135  
  13.3 Generating sequence for the main hyperbolic  
    Vekua equation . 138