Chapter 2

Quantification of Global DNA Methylation by Capillary Electrophoresis and Mass Spectrometry

María Berdasco, Mario F. Fraga, and Manel Esteller

Abstract

Two approaches for the evaluation of the relative degree of global DNA methylation through the quantification of 2′ deoxynucleosides are described. Detection and quantification of 5-methyl 2′-deoxycytidine in genomic DNA is performed using both high-performance capillary electrophoresis (HPCE) with UV–Vis detection or liquid chromatography with electrospray ionization mass spectrometric detection (LC-ESI/MS). Treatment of genomic DNA with a ribonuclease and generation of nucleosides through enzymatic hydrolysis notably increases the specificity of both techniques. Both approaches have been demonstrated to be highly specific and sensitive, being useful for the rapid quantification of the degree of global DNA methylation and its exploitation for the analysis of poorly purified and/or concentrated DNA samples, such as tumor biopsies.

Key words: Capillary electrophoresis, mass spectrometry, global DNA methylation, 2′-deoxynucleosides, 5-methyl 2′ deoxycytidine.

1. Introduction

DNA methylation research can be approached from several standpoints since there are a wide range of techniques available for the study of the occurrence and localization of methylcytosine in the genome (1). Each technique has its own peculiarities implying that there is a best-suited technique for each specific problem. The available methods for studying the degree of DNA methylation can be classified with respect to the type of information they produce: the degree of global genomic DNA methylation, the DNA methylation status of specific sequences, and the discovery of new methylation hot spots. With respect to the quantification of global levels of methylcytosine in the genomic
DNA, measurements can be performed by high-performance separation techniques or by enzymatic/chemical means. The latter are never as sensitive as the former and sometimes their resolution is restricted to endonuclease cleavage sites (2). Despite the drawbacks, enzymatic/chemical approaches are still commonly used since, unlike separation techniques, they do not require expensive and complex equipment, which is not always available. Although almost all actual efforts are focused on the characterization of the gene-specific methylation patterns or the construction of DNA methylation maps of the entire genome (methylome), global measurements of DNA methylation remain a valuable tool for understanding the molecular pathology of human cancer, for measuring the potential effect of tumor-preventive or -promoting compounds, and for monitoring therapeutic responses to hypomethylating agents undergoing evaluation in human clinical trials (3).

Among high-performance separation techniques, capillary electrophoresis (HPCE) and liquid chromatography (HPLC) are used most frequently. The development of capillary electrophoretic (CE) techniques, based on the separation of molecules by the use of a narrow-bore fused-silica capillary, has given rise to a methodological approach that has several advantages over other current methodologies used for the separation of various DNA components, including a number of base adducts (4). Molecules are separated on the basis of differences in size, charge, structure, and hydrophobicity under application of specific and strong voltages. CE has been shown to be extremely useful for the quantification of the extent of DNA methylation. Due to the sensitivity, specificity, and economy of these methods, HPCE had taken an advantage with regard to HPLC-based methods during the last years. However, the application of HPLC methods for the study of global DNA methylation has recently been enforced with the development of mass spectrometry (MS). LC/MS refers to the combination of liquid chromatographic (LC) separation with MS detection. The combination of these two powerful techniques enables the analysis of a great number of molecules, due to the resolution of each technique. In this way, it has been estimated that LC provides a consistent mechanism for the separation of molecules in over 80% of known organic species (5). In addition, MS is a useful tool to provide information about structure, molecular weight, or the empirical formula about a specific analyte. The development of electrospray ionization enables LC/MS to be utilized for the quantitative determination and structural characterization of a great number of polar/ionic molecules, such as nucleic acids, in biological samples (6).
2. Materials

All enzymes and reagents are available from Sigma–Aldrich if not otherwise stated.

2.1. Enzymes
1. Ribonuclease A (RNase A),
2. Nuclease P1: 200 U/mL in 30 mM sodium acetate, and
3. Alkaline phosphatase: 50 U/mL in 2.5 M ammonium sulphate.

2.2. Buffers and Other Reagents
1. 10 mM zinc sulphate,
2. 0.5 M Tris–HCl, pH 8.3,
3. Ethanol, and
4. 2-Isopropanol.

2.3. High-Performance Capillary Electrophoresis (HPCE)
1. 14 mM sodium bicarbonate (pH 9.6, equilibrated with 0.1 M sodium hydroxide) containing 20 mM sodium dodecyl sulphate (SDS),
2. 0.1 M sodium hydroxide,
3. 0.45-μm filters (Sartorius, Göttingen, Germany), and
4. Uncoated fused-silica capillary of 60.2 cm × 100 cm, with an effective length of 50 cm (Waters Chromatography S.A., Madrid, Spain).

2.4. High-Pressure Liquid Chromatography (HPLC)
1. 0.1% formic acid (HPLC grade) in water and
2. 0.1% formic acid in 50% water:50% methanol (HPLC grade).

2.5. Nucleotide Standards
All nucleosides standards are dissolved at 5 mM in Milli-Q grade water.
1. 2′-deoxyadenosine 5′monophosphate (dA),
2. 2′-deoxythymidine 5′monophosphate (dT),
3. 2′-deoxyguanosine 5′monophosphate (dG),
4. 2′-deoxycytidine 5′monophosphate (dC), and
5. 5-methyl 2′-deoxycytidine 5′monophosphate (5mdC).

2.6. Equipment
1. A HPCE P/ACE MDQ system (Beckman-Coulter, Fullerton, CA, USA) connected to a data-processing station (32 Karat™ Software);
2. An Agilent Serie 1100 HPLC system (Agilent Technologies, Palo Alto, CA, USA) equipped with an online vacuum-degassing system, a quaternary pumping system, an autosampler with internal refrigeration and ultraviolet and visible lamps for variable wavelength detection;
3. Reverse-phase column Atlantis dC18 column (2.1 × 150 mm; 5 μm particle size);
4. Guard column (2.1 × 20 mm; 5 μm particle size, Agilent); and
5. An Agilent LC/MSD VL MS equipped with an electrospray
ionization source (Agilent) coupled to the HPLC system.

3. Methods

In this chapter, we describe two different approaches for the
separation of nucleosides: a HPCE-based method and a HPLC-
based method. As shown in Fig. 2.1, the first steps and the relative
quantification of global DNA methylation signals are shared
between both techniques.

3.1. Genomic DNA
Extraction and RNase Treatment

DNA from animal tissues is extracted by standard methods (7).
It is important to obtain high-purity DNA to assure an effective

Fig. 2.1. Simplified representation of the two alternative procedures described in this
chapter, which are used for separation of DNA nucleosides and quantification of global
DNA methylation levels. After enzymatic hydrolysis of genomic DNA, nucleosides could
be separated by high-performance capillary electrophoresis (HPCE) or liquid chromatog-
raphy coupled to an electrospray ionization mass spectrometry (LC-ESI/MS). In both
cases, relative quantification of 5-methyl-2′-deoxycytidine (5mdC) levels are extrapo-
lated from HPCE or HPLC chromatograms.
action of the next steps of the protocol. A potential problem in the measurement of genomic DNA methylation is interference from RNA contamination (see Note 1); therefore, treatment with a ribonuclease is recommended before DNA hydrolysis.

1. Add RNase A to a final concentration of 20 μg/μL. Mix gently and incubate the mixture at 37°C for 30 min.
2. Following the incubation, add an equal volume of cold 2-isopropanol and mix thoroughly in order to enhance genomic DNA precipitation.
3. Centrifuge for 10 min at 11,000g and carefully decant the supernatant.
4. Wash the DNA pellet by adding cold 70% ethanol. Centrifuge for 5 min at 11,000g and resuspend the resulting pellet in Milli-Q grade water. Genomic DNA can be stored at 4°C till used.

3.2. DNA Hydrolysis

1. Prepare DNA samples (2–7 μg) in 10 μL of total volume. If necessary, dilute the samples in distilled water.
2. Denature the samples by heating for 2 min in a boiling water bath and cool rapidly in ice for 5 min.
3. Add nuclease P1 to a final concentration of 1.5 μg/μL and zinc sulphate to a final concentration of 1 mM (see Note 2). Incubate overnight at 37°C.
4. Add 0.75 μL of alkaline phosphatase and 1.25 μL of 0.5 M Tris–HCl, pH 8.3 (see Note 2). Incubate the mixtures for 2 h at 37°C.
5. In order to eliminate any solid residue, centrifuge samples at 10,000g for 3 min. Supernatant must be stored at 4°C till used.

3.3. Nucleoside Separation by High-Performance Capillary Electrophoresis (HPCE)

We have previously described the quantification of the relative methylcytosine content of the genomic DNA using a HPCE system to analyze hydrolyzed genomic DNA (8, 9). In this context, separation and quantification of cytosine and methylcytosine is only possible by the use of a sodium dodecylsulphate (SDS) micelle system. This method is faster than HPLC (taking less than 10 min per sample) and is also reasonably inexpensive since it does not require continuous running buffers and displays a great potential for fractionation (up to 10^6 theoretical plates). Nevertheless, no or almost no preparative analyses are possible with HPCE systems because of the low injection volumes.

For the separation of nucleosides after genomic DNA hydrolysis, the following procedure must be applied:

1. Before each run, prepare all buffers and washing solutions with Milli-Q water and filter them through 0.45-μm filters (see Note 3).
2. Condition the capillary system just before each run by washing with 0.1 M NaOH for 3 min.
3. After washing, equilibrate the capillary system with the running buffer for 3 min. The optimal running buffer is 14 mM sodium bicarbonate, pH 9.6 containing 20 mM SDS, which allows for the micelle formation of the nucleosides.

4. Filtered hydrolyzed samples (see Section 3.2) through 0.45-μm pore filters.

5. Inject samples under pressure (0.3 psi) for 3 s. Running conditions, optimized in (9) consist of a temperature of 25°C and an operating voltage of 17 kV (see Note 3). Absorbance is monitored at 254 nm. Figure 2.2 shows a representative electropherogram obtained for standard nucleosides and the DNA extracted from a human tumor cell line.

3.4. Nucleoside Separation by HPLC and Detection of Nucleosides Peaks by ESI/MS

The basic principles of both techniques are represented in Fig. 2.3. The separation mechanism in reverse phase (RP)-HPLC depends on the hydrophobic-binding interaction between the solute molecule of the sample in the mobile phase and the

![Electropherogram](image-url)
Fig. 2.3. Representative diagram of a LC-ESI/MS apparatus. First, samples are introduced into a HPLC system and analytes are separated in function of their individual hydrophobicity under specific conditions in a reverse-phase column. Then, the resulting mobile phase with the eluted molecules is introduced into the ESI/MS apparatus and subjected to fragmentation, ionization, and desorption processes under a constant nitrogen flow. HPLC and ESI/MS modules are connected to a computer, allowing the combined representation of HPLC chromatograms and mass spectra.

immobilized hydrophobic ligand (stationary phase) that constitutes the column. The capacity of solute molecule binding to the stationary phase can be controlled by manipulation of the hydrophobic properties of the mobile phase. The initial mobile phase-binding conditions used in RP-HPLC are primarily aqueous allowing the formation of a structured layer of water around both the matrix and the analyte. The sample must be applied to the column in such a flow rate that allows the optimal adsorption of the sample components. Transport and elution of analytes is achieved by increasing the concentration of the organic component in the mobile phase. Once the molecules are eluted from the column they get introduced into the electrospray system of the mass spectrometer. At this point, it is important to note that buffers must be free of salts, which could potentially damage the mass spectrometer. The electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods are the major techniques based on the atmospheric pressure ionization (API). In the ESI, both solvent and sample are nebulized with the help of a gas stream and broken into small droplets. The mobile phase solvent evaporates from the droplets.
Droplets undergo Coulomb explosions when the charge density increases until the Raleigh limit (10^8 V/cm^2) and new smaller droplets are formed. Ions in solution are desorbed under the influence of high potential of the electrospray fields in the spray chamber. The ESI technique can be applied to a wide range of molecule sizes, except for small (<1000 mw) and extremely nonpolar molecules. However, one of the disadvantages of ESI is that the solution chemistry could influence the ionization process and some adducts could be generated, such as $[\text{M + H}]^+$, $[\text{M + Na}]^+$, and $[2\text{M + H}]^+$.

A LC-ESI/MS approach for analyzing enzymatic hydrolysates of DNA was previously described (6). Although this method provided a good quantitative analysis of DNA methylation in less than 15 min, conditions for the LC included buffers with ammonium salts which are inconvenient for the maintenance of the LC-ESI/MS system and also favor the production of single ammonium adducts in the ESI/MS. Here we describe a protocol in which adequate separation of the DNA and RNA components is achieved within 25 min. Buffers without salts are employed, making the direct flow of solvents from LC to ESI/MS system feasible.

LC-ESI/MS conditions required for the analysis of the 2'-deoxyribonucleotide-5'-monophosphate levels are as follows:

1. Before each run, equilibrate the HPLC column with the running buffer. The mobile phase consists of two buffers: 0.1% formic acid in water (Solvent A) and 0.1% formic acid in 50% water:50% methanol (Solvent B) (see Note 4). Equilibration must be done by maintaining the initial conditions, 95% Solvent A–5% Solvent B in an isocratic mode during 5 min at constant flow of 0.220 mL/min. The employed Atlantis dC18 column permits to minimize the loss in retention in a 100%-aqueous mobile phase (3). It is strongly recommended to protect the column by the use of a guard column (see Note 3).

2. Dilute the hydrolyzed DNA (see Section 3.2) in water to a final volume of 50 μL and filter it through a 0.45-μm pore filter just before injection (see Note 3).

3. HPLC separation must be performed with an initial gradient of 5% solvent B, then an increase of solvent B to 50% within 9 min and an isocratic gradient (50% of solvent B) during 25 min. The acquisition of HPLC signals is obtained by UV detection at 254 nm and 280 nm. It is important to point out that the HPLC separation under the previously described conditions is achieved in solvents without salt compounds. As a consequence, no desalting before the entry of the solvents into the ESI/MS is needed.

4. Source conditions for ESI/MS are as described in (6), with minor modifications. A drying gas flow of 10.0 L/min was
employed, with auxiliary 35 psis gas to assist nebulization and a drying temperature of 350°C. The mass spectrophotometer was operated at a capillary voltage of 4,000 V, and spectra were collected in positive ion mode.

After 14 min, all the DNA and RNA compounds are completely separated as shown in the LC chromatogram (Fig. 2.4). The ESI/MS spectra are used to verify the identity of each HPLC peak used for the estimation of the DNA methylation levels. As expected, the ESI source with the mass spectrometer in positive ion detection mode shows protonated molecules as well as fragments ions and other known adducts derived from nucleosides. Figure 2.4 shows the LC chromatogram and the product ion spectra of the five deoxyribonucleosides (5mdC, dC, dG, dA, and dT) and the five ribonucleosides (5mC, C, G, A, and U) after hydrolysis of a 4 μg of a tumor sample without RNase treatment during nucleic acid extraction. The transitions pairs of m/z 242.1/126.1, 228.1/112.1, 268.1/152.1, 252.1/136.0, and 243.1/127.0 corresponded to 5mC, 5mdC, dC, dG, dA, and T, respectively, while 258.1/126.0, 244.1/112.1, 284.1/152.2, 268.1/136.1, and 245.1/113.0 were acquired for 5mC, C, G, A, and U, respectively. The presence of T and U in the LC chromatogram is less prominent than the other nucleosides,

Fig. 2.4. LC-ESI/MS chromatogram and specific product ions of 10 nucleosides corresponding to the DNA and RNA compounds. DNA hydrolysis was carried out from 4 μg of DNA from a tumor cell line without RNase treatment. LC and ESI/MS conditions are described in Section 3.4.
which may be attributed to the weaker proton affinity of these nucleosides.

In the case of RNase-treated samples, the chromatogram shows only peaks corresponding to the five deoxyribonucleotides (Fig. 2.5). The HPLC peak eluting after 4.0±0.5 min corresponds to 2′-deoxycytidine (dC), and the HPLC peak eluting after 5.5±0.5 min correspond to 5-methyl-2′-deoxycytidine (5mdC). Figure 2.5B and C report the full-scan spectra (ESI/MS spectra) of dC and 5mdC, respectively. The [M + H]+ adduct appears at m/z 228.1 and 242.1 for dC and 5mdC, respectively. Also present are the [2M] and [2M + H]+ adducts at m/z 455.1 and 456.0 for dC and m/z 483.1 and 484.0 for 5mdC, respectively. In some samples, the [M + 23]+ and the [2M + 23]+ adducts can also be found, which correspond to sodium adducts. It is important to point out that sodium adducts are frequently detected in ESI mass spectra of organic compounds, because they are normal compounds of glass vials used for HPLC.

Fig. 2.5. LC-ESI/MS chromatogram of a human lymphocyte sample containing 3 μg of RNA-free genomic DNA. (A) Separation of the five deoxynucleosides in the HPLC chromatogram obtained by UV detection at an absorbance of 254 nm. (B and C) Full spectra obtained in ESI/MS for 2′-deoxycytidine (dC) and 5-methyl-2′-deoxycytidine (5mdC), respectively. LC and ESI/MS conditions are described in Section 3.4.
separation. After the separation of the DNA bases the fragment-
tation conditions established in the ESI/MS cause the separa-
tion of the pentose moiety from the pyrimidine ring of both
dC and 5mdC resulting in the production of cytosine (m/z
112.1) and 5-methylcytosine (m/z 126.1). In this way, condi-
tions for ESI/MS can be optimized to change the intensity of
[M + H]^+ adducts with respect to the formation of dimers,
sodium adducts, and nitrogen bases (3).

3.5. Quantification

To determine the 5mdC abundance, the percentages of global
genomic DNA methylation are calculated by integration of the
peak areas of 5mdC relative to global cytidine (methylated or
not). Area peaks are obtained directly from HPCE or HPLC
chromatograms, depending of the selected approach. The follow-
ing equation was used in both cases: 5mdC peak area × 100/(dC
peak area + mdC peak area).

4. Notes

The most common considerations for preventing failures in the
separation of nucleosides by HPCE and HPLC techniques which
could influence results are

1. One of the major problems of this technique is the incomplete
digestion of RNA compounds. As the estimation of global
DNA methylation is based on a relative index between methy-
lated and unmethylated cytidines, this index could be underes-
timated in the presence of RNA compounds. Treatment with
a ribonuclease assures the fidelity of the results as shown in
Fig. 2.5.

2. Adjustment of the pH and molarity of the Tris and sulphate
buffers is important to assure the complete and specific DNA
hydrolysis. Unspecific hydrolysis could influence results, espe-
cially for the HPCE technique.

3. Temperature and voltage are the two main variables that
determine the best separation of the nucleosides. Small par-
ticles can permanently block the capillaries. It is important
to use filtered solvents always both for the HPCE and the
HPLC method. Furthermore, in HPLC the employment of precolumns is strongly recommended. If not, the pressure of
the system might not be constant and the resolution of the
method might noticeably decrease. The temperature must be
lower than 30°C for HPCE and column temperature should
be controlled in the HPLC.

4. Solutions of organic acids, such as formic acid, in organic sol-
vents act as corrosive factors of all steel components. Although
the HPLC method uses a low concentration, a 0.1% solu-
tion of formic acid in methanol, the acid can attack steel.
Consequently, it is important to remove the running buffers by washing the system with methanol: water solutions before switching off the apparatus. However, a low concentration of acid is necessary for the positive ion mode detection in the mass spectrometry.

References

DNA Methylation
Methods and Protocols
Tost, J. (Ed.)
2009, XVI, 392 p., Hardcover
ISBN: 978-1-934115-61-9
A product of Humana Press