Preface

Peter E. Valk passed away on December 16, 2003 in Berkeley, California. David Townsend wrote in the “In Memoriam” that was published in the February 2004 issue of the Journal of Nuclear Medicine: “He will be deeply missed by his many friends and colleagues throughout the Nuclear Medicine and PET community world-wide for his insight, knowledge, integrity and humour.”

Peter was a dear friend and we certainly miss him. In 2003, Peter coedited Positron Emission Tomography: Basic Science and Clinical Practice, a comprehensive contemporary reference textbook on positron emission tomography (PET). A few months before he died, Peter informed me that Springer intended to divide this nearly 900 pages textbook into two separate volumes for clinical and basic sciences. Peter was acutely aware of his prognosis and asked me if I would be willing to take over and edit the clinical volume. I willingly accepted. This book Positron Emission Tomography: Clinical Practice is a selected and updated version of the clinical chapters from the original book.

Positron Emission Tomography is an exceptional functional imaging tool. There has been a tremendous increase in interest in PET in the past decade, not only as a research tool but particularly in the clinical arena. The editors of the original book (Peter Valk, Dale Bailey, David Townsend and Michael Maisey) noted how they had collectively been involved in many aspects of PET development, including instrumentation, algorithms and protocol developments and applications, as well as the training of basic scientists and medical specialists, and efforts to convince health bureaucrats of the value of functional imaging in patient management. Through their extensive involvement in all aspects of PET, they progressively became aware of the lack of a comprehensive and contemporary reference work covering the science and clinical applications of PET. The original edition of their book arose from a desire to redress this situation.

The field of PET is progressing rapidly with the developments of multimodality imaging using integrated PET/CT systems. For this separate edition of clinical applications, the intent remains true to the aims of the first edition, namely, to provide a contemporary reference work covering the science and clinical applications of PET with extensive updating to include PET/CT technology. The book is designed to be used by residents and fellows training in medical imaging specialties as well as imaging experts in private or academic medicine who need to become familiar with this technology, and by those whose specialties carry over to PET and PET/CT such as oncologists, cardiologists, neurologists and surgeons.

Chapters 1 to 4 address the basic aspects of PET and PET/CT including physics and instrumentation, an overview of the clinical advantages of the PET/CT technology over PET or CT alone; the viewpoint of the technologist, radiation dosimetry and protection. Chapters 5 to 25 address oncologic applications and have been significantly updated with new data related to the PET/CT technology; many PET/CT illustrations are included. As in the first edition, a chapter is devoted to infectious diseases and another to PET imaging in pediatric disorders. Chapter 26 is an overview of the cardiac applications of PET, and Chapter 27 discusses cardiac PET/CT that some experts envision as the future one-stop-shop cardiac examination. Chapter 28 is an overview of PET imaging in clinical neurology and is probably the least influenced by recent development of PET/CT technology.
To conclude, I restate part of the preface from the first edition:

We are indebted to the many friends and colleagues who have contributed to this book, and who have willingly shared their knowledge and experience.

The functional nature of PET is based on its ability to target specific biochemical pathways through sophisticated radioactive probes and to record the time course of tracer uptake with highly sensitive instrumentation. PET is indeed a rich area in which to work, in part because of the multidisciplinary nature of the field. Developments in instrumentation, for example, are as much driven by radiochemistry and medical challenges as they are by progress in basic physics and instrumentation. Manufacturers of PET instrumentation have also played a major role in the development of the field by sharing many of their designs for critical appraisal at an early stage, and by being willing to listen to, support, and often fund novel prototype concepts. The development of the combined PET/CT scanner is a prime example of this collaboration.

PET is currently moving forward rapidly on a number of fronts: instrumentation is developing at a fast pace; synthetic radiochemistry is becoming more sophisticated and reliable; new reconstruction algorithms and processing methods are becoming more generally usable because of rapid advances in computer hardware and software; clinical applications are burgeoning as PET becomes affordable for more practitioners; and developments in molecular biology and functional genomics provide opportunities for monitoring gene expression and targets for gene therapy.

In this context, it is a challenge to produce a reference work which remains current even during the period from production of the original text to eventual publication, let alone for a significant number of years afterwards. We leave it up to the reader, and to future readers, to assess how successful we have been in this endeavour.

Dominique Delbeke, MD, PhD
December 2005
Contents

Contributors ... xi

1 Basic Science of PET and PET/CT
 David W. Townsend 1

2 Incremental Value of Imaging Structure and Function
 Dominique Delbeke 17

3 The Technologist's Perspective
 Bernadette F. Cronin 27

4 Radiation Protection and Dosimetry in PET and PET/CT
 Jocelyn E.C. Towson and Stefan Eberl 41

5 Artifacts and Normal Variants in Whole-Body PET and PET/CT Imaging
 Gary J.R. Cook .. 63

6 PET Imaging in Brain Tumors
 Terence Z. Wong and R. Edward Coleman 79

7 PET and PET/CT Imaging in Lung Cancer
 Pierre Rigo, Roland Hustinx, and Thierry Bury 89

8 PET and PET/CT Imaging in Head and Neck Cancer
 Val J. Lowe, Brendan C. Stack, Jr., and Trond V. Bogsrud 107

9 PET and PET/CT Imaging in Lymphoma
 Guy H.M. Jerusalem, Roland Hustinx, and Pierre Rigo 125

10 PET and PET/CT Imaging in Colorectal Cancer
 Christiaan Schiepers and Peter E. Valk 147

11 PET and PET/CT Imaging in Esophageal and Gastric Cancers
 Farrokh Dehdashti and Barry A. Siegel 165

12 PET and PET/CT Imaging in Tumors of the Pancreas and Liver
 Dominique Delbeke and William H. Martin 181

13 PET and PET/CT Imaging in Breast Cancer
 Richard L. Wahl 197

14 PET and PET/CT Imaging in Testicular and Gynecologic Cancers
 Sharon F. Hain 217

15 PET and PET/CT Imaging in Melanoma
 George M. Segall and Susan M. Swetter 233
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>PET and PET/CT Imaging in Urologic Tumors</td>
<td>Paul D. Shreve</td>
<td>243</td>
</tr>
<tr>
<td>17</td>
<td>PET and PET/CT Imaging in Sarcoma</td>
<td>Michael J. O’Doherty and Michael A. Smith</td>
<td>253</td>
</tr>
<tr>
<td>18</td>
<td>PET and PET/CT Imaging in Thyroid and Adrenal Diseases</td>
<td>I. Ross McDougall</td>
<td>269</td>
</tr>
<tr>
<td>19</td>
<td>PET and PET/CT Imaging in Multiple Myeloma, Solitary Plasmacytoma, MGUS, and Other Plasma Cell Dyscrasias</td>
<td>Ronald C. Walker, Laurie B. Jones-Jackson, Erik Rasmussen, Marisa Miceli, Edgardo J.C. Angtuaco, Frits Van Rhee, Guido J. Tricot, Joshua Epstein, Elias J. Anaissie, and Bart Barlogie</td>
<td>283</td>
</tr>
<tr>
<td>20</td>
<td>Evolving Role of FDG-PET Imaging in the Management of Patients with Suspected Infection and Inflammatory Disorders</td>
<td>Hongming Zhuang and Abass Alavi</td>
<td>303</td>
</tr>
<tr>
<td>21</td>
<td>PET Imaging of the Skeleton</td>
<td>Gary J.R. Cook, Ignac Fogelman, and Ora Israel</td>
<td>317</td>
</tr>
<tr>
<td>22</td>
<td>PET Imaging in Pediatric Disorders</td>
<td>Hossein Jadvar, Leonard P. Connolly, Frederic H. Fahey, and Barry L. Shulkin</td>
<td>337</td>
</tr>
<tr>
<td>23</td>
<td>PET Imaging for Tumor Hypoxia: Characterizing the Tumor and Guiding Treatment</td>
<td>Joseph G. Rajendran and Kenneth A. Krohn</td>
<td>359</td>
</tr>
<tr>
<td>24</td>
<td>Labeled Pyrimidines in PET Imaging</td>
<td>Anthony F. Shields</td>
<td>375</td>
</tr>
<tr>
<td>25</td>
<td>Assessment of Treatment Response by FDG-PET</td>
<td>Lale Kostakoglu and Peter E. Valk</td>
<td>387</td>
</tr>
<tr>
<td>26</td>
<td>PET in Clinical Cardiology</td>
<td>Frank M. Bengel and Markus Schwaiger</td>
<td>413</td>
</tr>
<tr>
<td>27</td>
<td>Assessment of Coronary Artery Disease with Cardiac PET/CT</td>
<td>Marcelo F. Di Carli</td>
<td>433</td>
</tr>
<tr>
<td>28</td>
<td>PET in Clinical Neurology</td>
<td>Yen F. Tai and Paola Piccini</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>463</td>
</tr>
</tbody>
</table>
Positron Emission Tomography
Clinical Practice
2006, XIV, 475 p., Hardcover