Contents

Preface

1 **Introduction**

1.1 Definition and Main Groups of Corrosion – Terminology

1.2 Importance of Corrosion and Prevention Efforts

1.3 Corrosion Science and Corrosion Technology

References

2 **Wet Corrosion: Characteristics, Prevention and Corrosion Rate**

2.1 Description of a Wet Corrosion Process

2.2 Crucial Mechanisms Determining Corrosion Rates

2.3 Corrosion Prevention Measures

2.4 Expressions and Measures of Corrosion Rates

2.5 Basic Properties That Determine if Corrosion Is Possible and How Fast Material Can Corrode

References

Exercises

3 **Thermodynamics – Equilibrium Potentials**

3.1 Introduction

3.2 Free Enthalpy and Cell Voltage

3.3 The Influence of the State of Matter on Free Enthalpy and the Change of Free Enthalpy

3.4 Change of Free Enthalpy in Chemical Reactions. Reversible Cell Voltage

3.5 Electrode Reactions and Electrode Potentials

3.6 Series of Standard Potentials

3.7 Equilibrium Potentials of Reactions with Iron at 25°C

3.8 Pourbaix Diagram

3.9 A Simplified Presentation of Equilibrium Potential and Deviation from It

3.10 Possible Range for Real Potentials Under Corrosion Conditions

References

Exercises

4 **Electrode Kinetics**

4.1 Introduction: Anodic and Cathodic Reactions

References

Exercises
Different Forms of Corrosion Classified on the Basis of Appearance

7

7.1 Introduction

7.2 Uniform (General) Corrosion

7.3 Galvanic Corrosion

- **7.3.1 Conditions That Determine Corrosion Rates**
- **7.3.2 Prevention of Galvanic Corrosion**
- **7.3.3 Application of Galvanic Elements in Corrosion Engineering**

7.4 Thermogalvanic Corrosion

7.5 Crevice Corrosion

- **7.5.1 Occurrence, Conditions**
- **7.5.2 Mechanism**
- **7.5.3 Mathematical Models of Crevice Corrosion**
- **7.5.4 Crevice Corrosion Testing**
- **7.5.5 Practical Cases of Crevice and Deposit Corrosion**
- **7.5.6 Galvanic Effects on Crevice Corrosion**
- **7.5.7 Prevention of Crevice Corrosion**

7.6 Pitting Corrosion

- **7.6.1 Conditions, Characteristic Features and Occurrence**
- **7.6.2 Mechanisms**
- **7.6.3 Influencing Factors**
- **7.6.4 The Time Dependence of Pitting**
- **7.6.5 Pitting Corrosion Testing**
- **7.6.6 Prevention of Pitting Corrosion**

7.7 Intergranular Corrosion

- **7.7.1 General Characteristics, Causes and Occurrence**
- **7.7.2 Austenitic Stainless Steels**
- **7.7.3 Ferritic Stainless Steels**
- **7.7.4 Ni-based Alloys**
- **7.7.5 Aluminium Alloys**

7.8 Selective Corrosion (Selective Leaching)

7.9 Erosion and Abrasion Corrosion

- **7.9.1 Characteristic Features and Occurrence**
- **7.9.2 Types and Mechanisms**
- **7.9.3 Erosion and Erosion Corrosion in Liquid Flow with Solid Particles**
- **7.9.4 Influencing Factors and Conditions in Liquids and Liquid–Gas Mixtures**
- **7.9.5 Critical Velocities**
- **7.9.6 Abrasion and Other Wear Processes Combined with Corrosion**
- **7.9.7 Preventive Measures**

7.10 Cavitation Corrosion
7.11 Fretting Corrosion (Fretting Oxidation) 154
7.12 Stress Corrosion Cracking (SCC) 156
 7.12.1 Characteristic Features and Occurrence 156
 7.12.2 Mechanisms 157
 7.12.3 Fracture Mechanics Quantities 163
 7.12.4 Cracking Course and Data for Some SCC Conditions 164
 7.12.5 Prevention of SCC 170
7.13 Corrosion Fatigue 170
 7.13.1 Definition, Characteristic Features and Occurrence 170
 7.13.2 Influencing Factors and Mechanisms 171
 7.13.3 Factors Most Important for Crack Initiation and Early Growth 175
 7.13.4 Crack Growth Rate and Factors Affecting It 176
 7.13.5 Calculation of Number of Cycles to Failure of Welded Steel Structures 179
 7.13.6 Prevention of Corrosion Fatigue 180
References 181
Exercises 184

8 Corrosion in Different Environments 193
 8.1 Atmospheric Corrosion 193
 8.1.1 Environmental Factors and Their Effects 193
 8.1.2 Atmospheric Corrosion on Different Materials 196
 8.2 Corrosion in Fresh Water and Other Waters 198
 8.3 Corrosion in Seawater 203
 8.4 Corrosion in Soils 206
 8.5 Corrosion in Concrete 210
 8.6 Corrosion in the Petroleum Industry 212
 References 215
 Exercises 217

9 Corrosion Testing, Monitoring and Inspection 219
 9.1 Corrosion Testing in General 219
 9.1.1 Objectives 219
 9.1.2 Test Methods 220
 9.1.3 Testing Procedure 221
 9.2 Electrochemical Testing 223
 9.3 Corrosion Monitoring and Inspection 226
 9.3.1 Monitoring of Cathodic Protection 227
 9.3.2 Inspection and Monitoring of Process Plants 229
 9.3.3 Monitoring and Testing in Other Environments 232
 References 233
 Exercise 234
10 Corrosion Prevention

10.1 Materials Selection
 10.1.1 General Considerations
 10.1.2 Some Special Aspects of Materials Selection for the Offshore Industry
 10.1.3 Unalloyed and Low-alloy Steels and Cast Irons
 10.1.4 High-alloy Cast Irons
 10.1.5 Stainless Steels
 10.1.6 Nickel Alloys
 10.1.7 Copper and Its Alloys
 10.1.8 Aluminium and Its Alloys
 10.1.9 Titanium and Its Alloys
 10.1.10 Other Metallic Materials
 10.1.11 Non-metallic Materials

10.2 Change of Environment

10.3 Proper Design

10.4 Cathodic Protection
 10.4.1 Principle
 10.4.2 Protection Criteria and Specifications
 10.4.3 Cathodic Protection with Sacrificial Anodes
 10.4.4 Cathodic Protection with Impressed Current
 10.4.5 Electrolyte Resistance, Potential Variation and Current Distribution in CP Systems and Galvanic Elements

10.5 Anodic Protection

10.6 Corrosion Protection by Coatings
 10.6.1 Metallic Coatings
 10.6.2 Other Inorganic Coatings
 10.6.3 Paint Coatings
 10.6.4 Other Forms of Organic Coatings
 10.6.5 Pre-treatment Before Coating

References
Exercises

Subject Index
Corrosion and Protection
Bardal, E.
2004, XI, 315 p. 49 illus., Hardcover