Preface

World-wide unprecedented reform and restructuring of the electric power industry has imposed tremendous challenges on the operation of power systems under this new environment. Regardless of the market structures that may emerge in various parts of the world, system security, reliability and quality of supply must be maintained. Faced by an increasingly complicated co-existence of technical and economical considerations, new computational tools and software systems are in great demand by generators, system operators, retailers, and other market participants to meet operating, scheduling, planning, and financial requirements.

In recent years there have been many books published on deregulation of the power industry but most of them placed emphasis on the market structure and policy issues. From an engineering point of view, how to develop effective computational tools for efficiently operating restructured power systems is still a big challenge. During the past several years, with funding from both research council and industry, we have been working on different computational models and methods for operation and control of market-oriented power systems. This book, resulting from these successful projects, covers all the major operational issues, such as scheduling and dispatch, congestion management, available transfer capability calculation, price forecasting and optimal bidding strategies. In addition, a comprehensive review of international research and world-wide industry practice is presented in each chapter before describing our methods, so as to give readers a broader state-of-the-art in this exciting field. Thus this book should be a useful reference for professional managers and engineers involved in the operation and control of market-oriented power systems. It would also be of considerable value to postgraduate researchers.

We are very grateful to various sponsors for their generous funding of our research. We thank our former/current PhD students, research follows and colleagues for their cooperation and contributions. We wish to thank Oliver Jackson of Springer for his assistance in the preparation of the book. We would also like to thank Angelo Centonza for re-setting the style of the whole book by overcoming incompatible word processing formats.

Yong-Hua Song, Brunel University, UK
Xi-Fan Wang, Xi’an Jiaotong University, China
Table of Contents

List of Contributors .. XVII

1. **Operation of Restructured Power Systems**
Y.H. Song, X. Wang and J.Z. Liu .. 1
1.1 System Operation in a Competitive Environment ... 1
1.1.1 Reliability-related Functions ... 2
1.1.2 Market-related Functions ... 2
1.2 Effects of Industry Restructuring on System Reliability 3
1.3 New Requirement for Computation Tools and Software Systems in Electricity Markets ... 5
1.4 Outline of the Book ... 7
1.5 References ... 12

2. **Modelling and Analysis of Electricity Markets**
A. Maiorano, Y.H. Song and M. Trovato ... 13
2.1 Types of Markets ... 14
2.1.1 Fundamental Market Structure and Mechanism 15
2.2 Commodity Markets ... 16
2.2.1 Cash Market ... 17
2.2.2 Futures Market .. 17
2.2.3 Options Market ... 17
2.2.4 Swap Market ... 17
2.2.5 Planning Market .. 17
2.3 Perfect Competition and Oligopolistic Market 18
2.3.1 Market Equilibrium: The Law of Supply and Demand 19
2.3.1.1 Elasticities of Supply and Demand .. 21
2.3.2 Perfect Competition .. 22
2.3.3 Classical Theories of Oligopoly ... 24
2.3.3.1 The Cournot Model .. 24
2.3.3.2 Isoprofit Curves and Reaction Functions 25
2.3.3.3 The Bertrand Model .. 28
2.3.3.4 The Stackelberg Equilibrium .. 30
2.4 Oligopolistic Electricity Market .. 31
4.3.1.1 Objective

4.3.1.2 Equality Constraints

4.3.1.3 Inequality Constraints

4.3.1.4 Pricing for Real-time Active Power Dispatch

4.3.1.5 Meeting Real-time Imbalance of Market under Normal Operating Condition

4.3.1.6 Replacement of Operating Reserves

4.3.1.7 Curtailment of Bilateral Contracts

4.3.2 Q Sub-problem

4.4 Imbalance Settlement Methodologies

4.5 Implementation

4.6 Test Results

4.6.1 Coordinated Dispatch without Network Congestion

4.6.2 Coordinated Dispatch with Network Congestion

4.6.3 Comparison Between the RSLP and PDPLP

4.7 Conclusions

4.8 References

Appendix A: Primal-dual Interior Point Linear Programming Method

5. Available Transfer Capability Evaluation

Y. Xiao, Y.H. Song and Y.Z. Sun

5.1 Definition and Application of ATC

5.1.1 Definition of ATC

5.1.2 Industrial Applications of ATC

5.2 Criteria for ATC Evaluation

5.2.1 Accuracy

5.2.2 Dependability

5.2.3 High Efficiency

5.3 Review of Existing Methodologies for ATC Evaluation

5.3.1 Existing Methodologies

5.3.1.1 Sensitivity Analysis

5.3.1.2 Continuation Power Flow

5.3.1.3 Optimal Power Flow

5.3.2 ATC Evaluation in Industry

5.3.2.1 EPRI [19]

5.3.2.2 ECAR [20]

5.3.2.3 PJM [7]

5.3.2.4 NYISO [21]

5.4 Proposed Stochastic Model for ATC Evaluation

5.4.1 Overview of Proposed Approach

5.4.2 Modelling Uncertainties

5.5 Formulated ATC Evaluation Model

5.5.1 Objective Function

5.5.2 Operating Constraints

5.6 Proposed Hybrid Stochastic Approach

5.6.1 Application of SPR to Deal with Discrete Variables

5.6.2 Application of CCP to Deal with Continuous Variables
6. Transmission Congestion Management

X. Wang, Y.H. Song and Q. Lu

6.1 General Methodologies for Congestion Management
 6.1.1 Transaction Curtailment
 6.1.2 Transmission Capacity Reservation
 6.1.3 System Redispacth
 6.1.4 Overall Congestion Management Process

6.2 International Comparison of Congestion Management Approaches
 6.2.1 UK Market
 6.2.2 PJM Market in the US
 6.2.3 California Market in the US
 6.2.4 Norway and Sweden Market
 6.2.5 New Zealand Market

6.3 Real-time Congestion Management across Interconnected Regions
 6.3.1 Proposed Method for Regional Decomposition OPF
 6.3.2 Application of the Proposed Method to Congestion
 Management across Interconnected Regions
 6.3.2.1 Mathematical Model
 6.3.2.2 Sequential Solution versus Parallel Solution
 6.3.2.3 Global Congestion Management versus Two-level
 Congestion Management
 6.3.3 Test Results
 6.3.3.1 Case 1: Inter-regional Congestion Management
 6.3.3.2 Case 2: Intra-regional Congestion Management
 6.3.3.3 Parameters Selection and Discussion

6.4 Conclusions

6.5 References

Appendix A: Lagrangian Relaxation Decomposition Approach

7. Dynamic Congestion Management

J. Ma, Q. Lu and Y.H. Song

7.1 Stability Analysis and Control of Power Systems

7.2 Stability-constrained Optimal Power Flow

7.3 Market-based Dynamic Congestion Management

7.4 Case Studies and Analysis

7.5 Conclusions and Future Work
8. Financial Instruments and Their Role in Market Dispatch and Congestion Management
X. Wang, Y.H. Song and M. Eremia ... 205
8.1 CfDs and FTRs .. 206
 8.1.1 CfDs ... 206
 8.1.2 FTRs .. 207
 8.1.3 How CfDs and FTRs Hedge Price Risks .. 210
8.2 Spot Market Dispatch and Congestion Management with Individual Revenue Adequacy Constraints ... 211
 8.2.1 Impact of Operating Limits on Locational Marginal Prices 211
 8.2.2 Formulation of Individual Revenue Adequacy Constraints 213
 8.2.3 Implementation ... 214
 8.2.4 Test Results ... 216
 8.2.4.1 System I: 5-bus System ... 216
 8.2.4.2 System II: IEEE 30-bus System .. 216
8.3 Conclusions .. 220
8.4 References ... 220

9. Ancillary Services I: Pricing and Procurement of Reserves
M. Rashidinejad, Y.H. Song and M.H. Javidi .. 223
9.1 Ancillary Services in the Electricity Industry .. 223
 9.1.1 Types of Ancillary Services ... 224
 9.1.2 Market for Ancillary Services ... 226
 9.1.3 General Considerations in England and Wales Ancillary Services Markets ... 228
9.2 Reserve Provision and Pricing in Power Markets .. 229
 9.2.1 Contingency Reserves ... 229
 9.2.2 Reserve Procurement Mechanism .. 230
 9.2.3 Reserve Markets in Several Power Markets .. 231
 9.2.3.1 Reserve Markets in England and Wales .. 231
 9.2.3.1.1 Mandatory Frequency Response 231
 9.2.3.1.2 Commercial Ancillary Services 232
 9.2.3.2 Reserve Markets in the USA .. 232
 9.2.3.2.1 California Markets ... 232
 9.2.3.2.2 New York Markets ... 233
 9.2.3.2.3 New England Markets .. 234
 9.2.3.2.4 Pennsylvania New Jersey Maryland PJM Markets 234
 9.2.4 Research into Reserve Procurement and Pricing 235
9.3 Joint Dispatch for Reserve Procurement and Pricing 237
 9.3.1 Application of JEROD to Deal with Reserve Provision and Pricing 237
 9.3.1.1 Physical Constraints .. 239
 9.3.1.2 Operational Security Constraints .. 239
 9.3.2 Numerical Case Study ... 240
9.3.2.1 Six-unit Test System ... 240
9.3.2.2 Contingency Reserve Settlements 242
9.4 Development of Option Pricing Mechanism for Reserve Markets .. 243
 9.4.1 Derivative Securities and Financial Contracts 243
 9.4.1.1 What Is a Derivative? ... 243
 9.4.1.2 Forward Contracts .. 243
 9.4.1.3 Futures Contracts .. 244
 9.4.1.4 Option Contracts ... 244
 9.4.1.5 Why Option Contracts are Needed for Electricity and Ancillary Services .. 244
 9.4.2 Option Structure and Option Evaluation 245
 9.4.3 Application of Standard Options for Reserve Procurement and Pricing ... 247
 9.4.4 Case Study and Results Analysis ... 248
9.5 Reference ... 250

10. Ancillary Services II: Voltage Security and Reactive Power Management
10.1 Introduction ... 253
 10.1.1 Reactive Power and Voltage Control ... 253
 10.1.2 Monitoring and Assessment of Voltage Security 254
 10.1.3 Transition-optimised Reactive Power and Voltage Control 254
 10.1.4 Voltage Security and Congestion Management 255
10.2 Reactive Power Markets and Pricing Mechanisms 255
 10.2.1 Examples of Reactive Power Markets.. 255
 10.2.1.1 England and Wales (UK) .. 256
 10.2.1.2 New York (USA) .. 257
 10.2.1.3 Australia ... 258
 10.2.2 Analysis of Reactive Power Markets 259
10.3 Transition-optimised Reactive Power Control 260
 10.3.1 Introduction .. 260
 10.3.2 Algorithmic Procedure ... 261
 10.3.2.1 Objective Function ... 261
 10.3.2.2 Transition Constraints ... 262
 10.3.2.3 Solution Algorithm ... 262
 10.3.3 Case Studies ... 263
 10.3.3.1 Case Study I .. 264
 10.3.3.2 Case Study II ... 265
 10.3.4 Concluding Remarks .. 266
10.4 Congestion Management and Voltage Security 267
 10.4.1 Introduction .. 267
 10.4.2 Nomenclature ... 267
 10.4.3 Algorithmic Procedure ... 268
 10.4.3.1 Mathematical Model ... 269
 10.4.3.2 Computational Procedures ... 271
 10.4.4 Computational Case Studies ... 273
11. Load and Price Forecasting via Wavelet Transform and Neural Networks
I.K. Yu and Y.H. Song

11.1 Load Forecasting and Conventional Techniques
11.1.1 Time-series Models
 11.1.1.1 Auto-regressive (AR)
 11.1.1.2 Moving Averages (MA)
 11.1.1.3 Mixed Auto-regressive and Moving Average (ARMA)

11.1.2 Regression Model

11.2 Novel Methods for Short-term Load Forecasting
11.2.1 Wavelet Transform Applications
 11.2.1.1 Wavelet Transform Analysis
 11.2.1.2 Load Forecasting Process by the Wavelet Transform

11.2.2 Kohonen-neural-network-based Approach
 11.2.2.1 Architecture of the Kohonen Neural Network
 11.2.2.2 Unsupervised Learning

11.2.3 STLF by a Composite Model

11.2.4 Case Studies and Analysis
 11.2.4.1 Case Study by Wavelet-transform-based Model
 11.2.4.1.1 Classification of the Daily Load Patterns
 11.2.4.1.2 Numerical Results

11.3 Electricity Price and Modelling
11.3.1 Characteristics of the SMP
11.3.2 SMP Models

11.4 Forecasting the SMP
 11.4.1 Neural-network-based Model
 11.4.2 Wavelet-transform-based Model
 11.4.3 Combined Model
 11.4.3.1 Decomposing the SMP Data
 11.4.3.2 Predicting the Approximation
 11.4.3.3 Estimating the Detail
 11.4.3.4 Summing the Approximation and the Details

11.4.4 Prediction Results and Analysis
 11.4.4.1 Predictions Results by Neural-network-based Model
 11.4.4.2 Predictions Results by Wavelet-transform-based Model
 11.4.4.3 Predictions Results by Combined Model

11.5 Summary

11.6 References
12. Analysis of Generating Companies’ Strategic Behaviour

A. Maiorano, Y.H. Song and M. Trovato

- **12.1 The Electricity Marketplace** ... 318
 - 12.1.1 Auction Structures .. 318
 - 12.1.1.1 Bundling of Demand into Lots ... 319
 - 12.1.1.2 Sequencing of Auctions .. 321
 - 12.1.1.3 Pricing Rule .. 321
- **12.2 Strategic Supply Functions** .. 323
 - 12.2.1 Supply Constraints .. 326
- **12.3 Linear Strategic Supply Functions** ... 328
- **12.4 Proposed Model** .. 330
 - 12.4.1 Inverse Demand Function Evaluation .. 332
 - 12.4.2 Presence of Private Contracts ... 333
 - 12.4.3 Final Formulation of the Model ... 333
- **12.5 Case Studies and Results Analysis** ... 337
- **12.6 Conclusions** ... 343
- **12.7 References** .. 344

13. Bidding Problems in Electricity Generation Markets

Y. He, Y.H. Song and X.F. Wang

- **13.1 Generation Auction Markets in Electricity Markets** 347
 - 13.1.1 Auction Mechanism ... 347
 - 13.1.1.1 Standard Auction Formats ... 347
 - 13.1.1.2 Single-round Bidding and Multi-round Bidding 349
 - 13.1.1.3 Simple Bids and Multi-part Bids ... 349
 - 13.1.2 Existing Auction Mechanism: Trading Arrangement and Pricing Mechanism .. 350
 - 13.1.2.1 UK Market .. 350
 - 13.1.2.2 PETA [6][7] ... 350
 - 13.1.2.3 NETA [8][9] .. 351
 - 13.1.2.4 California [10] ... 352
 - 13.1.2.7 Australia National Electricity Market (NEM) [14] 354
 - 13.1.3 Market Power in Generation Auction Markets .. 355
 - 13.1.4 Getting to Know Market Power .. 355
 - 13.1.5 Measuring Market Power ... 357
 - 13.1.5.1 Mitigating Market Power ... 358
 - 13.1.6 Uncertainties and Risk Mitigation ... 359
 - 13.1.6.1 Uncertainties in Electricity Markets .. 359
 - 13.1.6.2 Risk Mitigation .. 360
- **13.2 Decision-making and Strategies in Generation Auction Markets** 361
 - 13.2.1 Overview of Decision-making ... 361
 - 13.2.1.1 Decision-making, Model and Algorithm .. 361
13.2.1.2 Decision-making in Electricity Markets 363
13.2.1.3 Decision-making in Electricity Generation Market 364
13.2.2 Game Theory Applications in Generation Auction Market 365
13.2.2.1 Basic Concept of Game Theory and Its Application in Electricity Markets .. 365
13.2.2.2 Game-theory-based Bidding Strategies 366
13.2.3 Optimisation-based Approaches to making Bidding strategies making ... 367
13.2.3.1 Bidding decision-making by Optimisation-based Market Simulator ... 367
13.2.3.2 Optimal Bidding Based on Formulation of Market Prices with Generators' Behaviours Embedded 368
13.2.3.3 Application of Markov Decision Process (MDP) in Bidding Strategies ... 371
13.2.4 Other Methodologies for Decision-making 372
13.3 Study of Bidding Strategies Based on Bid Sensitivities in Pool-based Spot Markets .. 372
13.3.1 Introduction ... 372
13.3.2 Analysis of Bid Sensitivities Based on the IPOPF Model 373
13.3.3 Bidding Strategies Based on Bid Sensitivities 375
13.3.3.1 Description of the Proposed Model 375
13.3.3.2 Optimal Bids ... 376
13.3.3.3 Nash Equilibrium Process ... 378
13.3.4 Bidding Strategies when Considering Coalitions 379
13.3.4.1 Combinations of Potential Coalitions 379
13.3.4.2 The Bidding Process Considering Coalitions 379
13.3.4.3 Optimal Bids of Sub-Groups 380
13.3.5 Case Studies and Conclusions .. 384
13.3.5.1 Bid Sensitivities .. 384
13.3.5.2 Bidding Processes and Optimal Bids without Coalition ... 386
13.3.5.3 Results When Bidding under Coalition 388
13.3.5.4 Conclusions ... 390
13.4 Integrated Bidding Strategies with Optimal Response to the Probabilistic Local Marginal Prices 391
13.4.1 Introduction ... 391
13.4.2 The Proposed GencoBDS .. 391
13.4.3 Three Main Modules of GencoBDS 393
13.4.3.1 Security-constrained Probabilistic LMP Simulation Model ... 393
13.4.3.2 Self-scheduling Unit Commitment Model 395
13.4.3.3 MCDM Method for Optimal Offers 397
13.4.3.4 Bidding Decision-making Process 398
13.4.4 Test Results and Conclusions ... 399
13.4.4.1 Test Results ... 399
13.4.4.2 Conclusions ... 403
13.5 References .. 404
XVI Contents

Appendix A: Notation Used in the Self-scheduling Unit
Commitment Model Module .. 406

14. Transmission Services Improvement by FACTS Control
Y. Xiao, X. Wang, Y.H. Song and Y.Z. Sun ... 407
14.1 FACTS Solutions to Power Flow Control ... 408
 14.1.1 Concept of FACTS Technology .. 408
 14.1.2 Models of FACTS Devices ... 409
 14.1.2.1 Power Injection Model (PIM) of FACTS Devices for
 ATC Enhancement ... 410
 14.1.2.2 PIM of Shunt Controller for Voltage Control 410
 14.1.2.3 PIM of Series Controller for Line Flow Control 410
 14.1.2.4 PIM of the Unified Controller for Power Flow
 Control .. 412
 14.1.2.5 DC Model of TCSC and TCPS for FTR Auction 413
14.2 ATC Enhancement by FACTS Control .. 415
 14.2.1 Formulated ATC Enhancement Model ... 418
 14.2.1.1 Control Variables .. 418
 14.2.1.2 Objective Function .. 418
 14.2.1.3 Operating and Control Constraints ... 419
 14.2.2 Implementation .. 421
 14.2.3 Case Studies .. 422
 14.2.3.1 Case 1: ATC Evaluation without FACTS Device 424
 14.2.3.2 Case 2: ATC Enhancement with Control of SVC 425
 14.2.3.3 Case 3: ATC Enhancement with Control of
 SVC+TCPS .. 428
 14.2.3.4 Case 4: ATC Enhancement with Control of
 SVC+UPFC .. 428
 14.2.4 Remarks .. 429
14.3 FTR Auction Improvement by FACTS Control 430
 14.3.1 Proposed Optimal FTR Auction Model ... 430
 14.3.2 Case Studies .. 432
 14.3.2.1 System I: 8-bus Test System .. 432
 14.3.2.2 System II: 30-bus Test System ... 434
 14.3.2.3 Discussion .. 438
 14.3.3 Remarks .. 439
14.4 References .. 439

Index ... 441
Operation of Market-oriented Power Systems
Song, Y.-H.; Wang, X.-F. (Eds.)
2003, XVIII, 443 p., Hardcover