Preface

Ontological Engineering refers to the set of activities that concern the ontology development process, the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them.

During the last decade, increasing attention has been focused on ontologies and Ontological Engineering. Ontologies are now widely used in Knowledge Engineering, Artificial Intelligence and Computer Science; in applications related to knowledge management, natural language processing, e-commerce, intelligent integration information, information retrieval, integration of databases, bioinformatics, and education; and in new emerging fields like the Semantic Web.

Primary goals of this book are to acquaint students, researchers and developers of information systems with the basic concepts and major issues of Ontological Engineering, as well as to make ontologies more understandable to those computer science engineers that integrate ontologies into their information systems. We have paid special attention to the influence that ontologies have on the Semantic Web. Pointers to the Semantic Web appear in all the chapters, but specially in the chapter on ontology languages and tools.

Many different methods, tools and languages, as well as the most outstanding ontologies, are presented to illustrate a diversity of approaches, but no single technique receives special attention. Each individual may choose to emphasize particular techniques depending on his/her own circumstances and interests. So, the book is designed to operate at two levels. First, as a simple introduction to the major areas of Ontological Engineering, and second, as a reference book. The emerging areas and the most up-to-date standards have also been considered.

The layout of the text is divided into five chapters: theoretical foundations, the most outstanding ontologies, methodologies, languages, and tools for developing ontologies. In every chapter (except the chapter that describes the most outstanding ontologies) we have used examples taken from the traveling domain. This provides a focal point for the book and allows readers to practise and compare different modeling techniques, different and similar methods and methodologies for building ontologies, and learn about ontology languages and different types of tools. We also
include comparative studies of methodologies, tools and languages to advise ontologists on their use.

The first chapter contains the theoretical foundations of the ontology field. Here we explain what an ontology is, the main types of ontologies, the main modeling components of ontologies based on frames or description logic, the design criteria for building ontologies as well as the relationships with other modeling techniques that are widely used on software engineering and databases.

Chapter 2 is devoted to the most outstanding ontologies. We present different types of ontologies: knowledge representation ontologies of traditional (i.e., Ontolingua and OKBC) and ontology mark-up languages (i.e., RDF(S), OIL, DAML+OIL, and OWL), top level ontologies, linguistic ontologies, and domain ontologies in the areas of e-commerce, medicine, engineering, enterprise, chemistry and knowledge management.

In Chapter 3 we explore different methods and methodologies for ontology construction. We present in detail the ontology development process and the methods and methodologies that support the ontology construction from scratch. We also discuss particular methods that allow specific activities. Special attention is given to the ontology learning methods that reduce the effort during the knowledge acquisition process; the merging of ontologies that generates a unique ontology from several ontologies; the ontology alignment that establishes different types of mapping between ontologies (hence preserving the original ones); and the ontology evaluation for evaluating the ontology content. For each methodology and method, we give an example taken from the traveling domain.

Chapter 4 deals with the process of selecting the ontology language (or set of languages) in which the ontology will be implemented. We describe how to implement ontologies in classical languages (Ontolingua, KIF, OCML and FLogic), the OKBC protocol, and web-based ontology languages (SHOE, XOL, RDF(S), OIL, DAML+OIL and OWL) that have laid the foundations of the Semantic Web. Some of them, like RDF(S) and OWL, are still in a development phase. As we have implemented an ontology of the traveling domain in all these languages, we compare their expressiveness and the reasoning mechanisms of each language.

Finally, Chapter 5 is concerned with several types of the tools and platforms used to build ontologies and tools that allow the use of ontologies for the Semantic Web. As in the previous chapters, we provide examples of ontologies with the tools of the traveling domain.

We hope that in the near future we will be able to support this text with a web site and give updates and slides for undergraduate and PhD courses.

For further information or comments contact OE@delicias.dia.fi.upm.es.

Asunción Gómez-Pérez
Mariano Fernández-López
Oscar Corcho

Facultad de Informática, UPM
May 2003
Acknowledgements

During the evolution of this book we have accumulated many debts, only a small proportion of which we have space to acknowledge here. We are particularly indebted to Rosario Plaza Arteche for her valuable help in checking and reviewing the grammar and spelling of the manuscript and improving clarity and style. Her sound, conscientious advice has been continuous while writing the whole book. We must also thank José Ángel Ramos Gargantilla who has helped us with the editing of the book and also for his valuable assistance with the creation of the text.

We are very grateful to the reviewers of some sections and chapters (Trevor Bench-Capon, John Domingue, Aldo Gangemi, Nicola Guarino, Boris Motik, Natasha Noy, Juan Pazos, York Sure, Valentina Tamma). They found time in their busy schedules to read the text and provide valuable suggestions for its improvement. We also give thanks to Manuel Lama Penín who reviewed the whole manuscript and contributed to the medical ontologies, and to Socorro Bernardos Galindo who made significant contributions to the linguistic ontologies.

We are also indebted to the Ontological Engineering community, whose ideas, methodologies, tools and languages are reported here. We have attempted to acknowledge their contributions where possible. Some of them are the results of interesting discussions with participants of OntoWeb (IST-2000-29243), MKBEEM (IST-1999-10589) and Esperonto (IST-2001-34373).

The following members of the Ontology Group at UPM made specially valuable suggestions and comments: Raquel Arpírez, Jesús Barrasa, José Cebrián, Miguel Esteban, Rafael González-Cabero, Antonio Pareja-Lora, Vanessa López, Ángel López-Cima, Adolfo Lozano-Tello, David Manzano, Rafael Núñez, José Ángel Ramos Gargantilla, Nuria Sánchez, María del Carmen Suárez-Figueroa, and Esther Ubeda-Portugués.

We are deeply beholden to the people at Springer-Verlag for their encouragement and belief in the value of this enterprise.

Finally, we owe very much to our families for their love and support without which we could not have finished this book.

All the errors and omissions which undoubtedly remain are entirely our own responsibility.
Ontological Engineering
with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. First Edition
Gómez-Pérez, A.; Fernandez-Lopez, M.; Corcho, O.
2004, XII, 404 p., Hardcover