Contents

PART I. System Reliability and Optimization

1 **Multi-state k-out-of-n Systems**
Ming J. Zuo, Jinsheng Huang and Way Kuo ... 3
1.1 Introduction ... 3
1.2 Relevant Concepts in Binary Reliability Theory 3
1.3 Binary k-out-of-n Models ... 4
1.3.1 The k-out-of-n:G System with Independently and Identically Distributed Components 5
1.3.2 Reliability Evaluation Using Minimal Path or Cut Sets 5
1.3.3 Recursive Algorithms .. 6
1.3.4 Equivalence Between a k-out-of-n:G System and an \((n - k + 1)$-out-of-$n$:F system ... 6
1.3.5 The Dual Relationship Between the k-out-of-n G and F Systems 7
1.4 Relevant Concepts in Multi-state Reliability Theory 8
1.5 A Simple Multi-state k-out-of-n:G Model 10
1.6 A Generalized Multi-state k-out-of-n:G System Model 11
1.7 Properties of Generalized Multi-state k-out-of-n:G Systems 13
1.8 Equivalence and Duality in Generalized Multi-state k-out-of-n Systems 15

2 **Reliability of Systems with Multiple Failure Modes**
Hoang Pham ... 19
2.1 Introduction ... 19
2.2 The Series System .. 20
2.3 The Parallel System .. 21
2.3.1 Cost Optimization .. 21
2.4 The Parallel–Series System ... 22
2.4.1 The Profit Maximization Problem 23
2.4.2 Optimization Problem .. 24
2.5 The Series–Parallel System ... 25
2.5.1 Maximizing the Average System Profit 26
2.5.2 Consideration of Type I Design Error 27
2.6 The k-out-of-n Systems ... 27
2.6.1 Minimizing the Average System Cost 29
2.7 Fault-tolerant Systems ... 32
2.7.1 Reliability Evaluation .. 33
2.7.2 Redundancy Optimization 34
2.8 Weighted Systems with Three Failure Modes 34

3 Reliabilities of Consecutive-k Systems
Jen-Chun Chang and Frank K. Hwang 37

3.1 Introduction ... 37
3.1.1 Background .. 37
3.1.2 Notation .. 38
3.2 Computation of Reliability 39
3.2.1 The Recursive Equation Approach 39
3.2.2 The Markov Chain Approach 40
3.2.3 Asymptotic Analysis 41
3.3 Invariant Consecutive Systems 41
3.3.1 Invariant Consecutive-2 Systems 41
3.3.2 Invariant Consecutive-k Systems 42
3.3.3 Invariant Consecutive-k G System 43
3.4 Component Importance and the Component Replacement Problem 43
3.4.1 The Birnbaum Importance 44
3.4.2 Partial Birnbaum Importance 45
3.4.3 The Optimal Component Replacement 45
3.5 The Weighted-consecutive-k-out-of-n System 47
3.5.1 The Linear Weighted-consecutive-k-out-of-n System 47
3.5.2 The Circular Weighted-consecutive-k-out-of-n System 47
3.6 Window Systems ... 48
3.6.1 The f-within-consecutive-k-out-of-n System 49
3.6.2 The 2-within-consecutive-k-out-of-n System 51
3.6.3 The b-fold-window System 52
3.7 Network Systems ... 53
3.7.1 The Linear Consecutive-2 Network System 53
3.7.2 The Linear Consecutive-k Network System 54
3.7.3 The Linear Consecutive-k Flow Network System 55
3.8 Conclusion ... 57

4 Multi-state System Reliability Analysis and Optimization
G. Levitin and A. Lisnianski 61

4.1 Introduction .. 61
4.1.1 Notation ... 63
4.2 Multi-state System Reliability Measures 63
4.3 Multi-state System Reliability Indices Evaluation Based on the Universal Generating Function 64
4.4 Determination of u-function of Complex Multi-state System Using Composition Operators 67
4.5 Importance and Sensitivity Analysis of Multi-state Systems 68
4.6 Multi-state System Structure Optimization Problems 72
4.6.1 Optimization Technique 73
4.6.1.1 Genetic Algorithm 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1.2</td>
<td>Solution Representation and Decoding Procedure</td>
<td>75</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Structure Optimization of Series-Parallel System with Capacity-based Performance Measure</td>
<td>75</td>
</tr>
<tr>
<td>4.6.2.1</td>
<td>Problem Formulation</td>
<td>75</td>
</tr>
<tr>
<td>4.6.2.2</td>
<td>Solution Quality Evaluation</td>
<td>76</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Structure Optimization of Multi-state System with Two Failure Modes</td>
<td>77</td>
</tr>
<tr>
<td>4.6.3.1</td>
<td>Problem Formulation</td>
<td>77</td>
</tr>
<tr>
<td>4.6.3.2</td>
<td>Solution Quality Evaluation</td>
<td>80</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Structure Optimization for Multi-state System with Fixed Resource Requirements and Unreliable Sources</td>
<td>83</td>
</tr>
<tr>
<td>4.6.4.1</td>
<td>Problem Formulation</td>
<td>83</td>
</tr>
<tr>
<td>4.6.4.2</td>
<td>Solution Quality Evaluation</td>
<td>84</td>
</tr>
<tr>
<td>4.6.4.3</td>
<td>The Output Performance Distribution of a System Containing Identical Elements in the Main Producing Subsystem</td>
<td>85</td>
</tr>
<tr>
<td>4.6.4.4</td>
<td>The Output Performance Distribution of a System Containing Different Elements in the Main Producing Subsystem</td>
<td>85</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Other Problems of Multi-state System Optimization</td>
<td>87</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Combinatorial Reliability Optimization Problems of Series Structure</td>
<td>95</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Optimal Solution Approaches</td>
<td>95</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Partial Enumeration Method</td>
<td>95</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Branch-and-bound Method</td>
<td>96</td>
</tr>
<tr>
<td>5.2.1.3</td>
<td>Dynamic Programming</td>
<td>98</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Heuristic Solution Approach</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>Combinatorial Reliability Optimization Problems of a Non-series Structure</td>
<td>102</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Mixed Series-Parallel System Optimization Problems</td>
<td>102</td>
</tr>
<tr>
<td>5.3.2</td>
<td>General System Optimization Problems</td>
<td>106</td>
</tr>
<tr>
<td>5.4</td>
<td>Combinatorial Reliability Optimization Problems with Multiple-choice Constraints</td>
<td>107</td>
</tr>
<tr>
<td>5.4.1</td>
<td>One-dimensional Problems</td>
<td>108</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Multi-dimensional Problems</td>
<td>111</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>113</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>6.2</td>
<td>Survival in the Plane</td>
<td>118</td>
</tr>
</tbody>
</table>
6.2 One-dimensiona... 118
6.2.1 One-dimensional Case 118
6.2.2 Fixed Obstacles ... 119
6.2.3 Failure Rate Process 121
6.2.4 Moving Obstacles 122

6.3 Multiple Availability 124
6.3.1 Statement of the Problem 124
6.3.2 Ordinary Multiple Availability 125
6.3.3 Accuracy of a Fast Repair Approximation 126
6.3.4 Two Non-serviced Demands in a Row 127
6.3.5 Not More than \(N \) Non-serviced Demands 129
6.3.6 Time Redundancy 130

6.4 Modeling the Mixture Failure Rate 132
6.4.1 Definitions and Conditional Characteristics 132
6.4.2 Additive Model ... 133
6.4.3 Multiplicative Model 133
6.4.4 Some Examples ... 135
6.4.5 Inverse Problem .. 136

7 Concepts of Stochastic Dependence in Reliability Analysis
C. D. Lai and M. Xie ... 141

7.1 Introduction .. 141

7.2 Important Conditions Describing Positive Dependence 142
7.2.1 Six Basic Conditions 143
7.2.2 The Relative Stringency of the Conditions 143
7.2.3 Positive Quadrant Dependent in Expectation 144
7.2.4 Associated Random Variables 144
7.2.5 Positively Correlated Distributions 145
7.2.6 Summary of Interrelationships 145

7.3 Positive Quadrant Dependent Concept 145
7.3.1 Constructions of Positive Quadrant Dependent Bivariate Distributions ... 146
7.3.2 Applications of Positive Quadrant Dependence Concept to Reliability ... 146
7.3.3 Effect of Positive Dependence on the Mean Lifetime of a Parallel System ... 146
7.3.4 Inequality Without Any Aging Assumption 147

7.4 Families of Bivariate Distributions that are Positive Quadrant Dependent 147
7.4.1 Positive Quadrant Dependent Bivariate Distributions with Simple Structures 148
7.4.2 Positive Quadrant Dependent Bivariate Distributions with More Complicated Structures 149
7.4.3 Positive Quadrant Dependent Bivariate Uniform Distributions ... 150
7.4.3.1 Generalized Farlie–Gumbel–Morgenstern Family of Copulas ... 151

7.5 Some Related Issues on Positive Dependence 152
7.5.1 Examples of Bivariate Positive Dependence Stronger than
Positive Quadrant Dependent Condition 152
7.5.2 Examples of Negative Quadrant Dependence 153
7.6 Positive Dependence Orderings .. 153
7.7 Concluding Remarks ... 154

8 Statistical Reliability Change-point Estimation Models
Ming Zhao ... 157
8.1 Introduction ... 157
8.2 Assumptions in Reliability Change-point Models 158
8.3 Some Specific Change-point Models .. 159
8.3.1 Jelinski–Moranda De-eutrophication Model with a Change
Point ... 159
8.3.1.1 Model Review ... 159
8.3.1.2 Model with One Change Point .. 159
8.3.2 Weibull Change-point Model ... 160
8.3.3 Littlewood Model with One Change Point 160
8.4 Maximum Likelihood Estimation ... 160
8.5 Application .. 161
8.6 Summary ... 162

9 Concepts and Applications of Stochastic Aging in Reliability
C. D. Lai and M. Xie ... 165
9.1 Introduction .. 165
9.2 Basic Concepts for Univariate Reliability Classes 167
9.2.1 Some Acronyms and the Notions of Aging 167
9.2.2 Definitions of Reliability Classes ... 167
9.2.3 Interrelationships .. 169
9.3 Properties of the Basic Concepts ... 169
9.3.1 Properties of Increasing and Decreasing Failure Rates 169
9.3.2 Property of Increasing Failure Rate on Average 169
9.3.3 Properties of NBU, NBUC, and NBUE 169
9.4 Distributions with Bathtub-shaped Failure Rates 169
9.5 Life Classes Characterized by the Mean Residual Lifetime 170
9.6 Some Further Classes of Aging ... 171
9.7 Partial Ordering of Life Distributions ... 171
9.7.1 Relative Aging .. 172
9.7.2 Applications of Partial Orderings .. 172
9.8 Bivariate Reliability Classes ... 173
9.9 Tests of Stochastic Aging ... 173
9.9.1 A General Sketch of Tests .. 174
9.9.2 Summary of Tests of Aging in Univariate Case 177
9.9.3 Summary of Tests of Bivariate Aging 177
9.10 Concluding Remarks on Aging .. 177
Class of NBU-t Class of NBU-t0 Life Distribution

Dong Ho Park

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>181</td>
</tr>
<tr>
<td>10.2</td>
<td>Characterization of NBU-t Class</td>
<td>182</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Boundary Members of NBU-t0 and NWU-t0</td>
<td>182</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Preservation of NBU-t0 and NWU-t0 Properties under Reliability Operations</td>
<td>184</td>
</tr>
<tr>
<td>10.3</td>
<td>Estimation of NBU-t0 Life Distribution</td>
<td>186</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Reneau–Samaniego Estimator</td>
<td>186</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Chang–Rao Estimator</td>
<td>188</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Positively Biased Estimator</td>
<td>188</td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Geometric Mean Estimator</td>
<td>188</td>
</tr>
<tr>
<td>10.4</td>
<td>Tests for NBU-t0 Life Distribution</td>
<td>189</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Tests for NBU-t0 Alternatives Using Complete Data</td>
<td>189</td>
</tr>
<tr>
<td>10.4.1.1</td>
<td>Hollander–Park–Proschan Test</td>
<td>190</td>
</tr>
<tr>
<td>10.4.1.2</td>
<td>Ebrahimi–Habibullah Test</td>
<td>192</td>
</tr>
<tr>
<td>10.4.1.3</td>
<td>Ahmad Test</td>
<td>193</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Tests for NBU-t0 Alternatives Using Incomplete Data</td>
<td>195</td>
</tr>
</tbody>
</table>

PART III. Software Reliability

Software Reliability Models: A Selective Survey and New Directions

Siddhartha R. Dalal

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>201</td>
</tr>
<tr>
<td>11.2</td>
<td>Static Models</td>
<td>203</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Phase-based Model: Gaffney and Davis</td>
<td>203</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Predictive Development Life Cycle Model: Dalal and Ho</td>
<td>203</td>
</tr>
<tr>
<td>11.3</td>
<td>Dynamic Models: Reliability Growth Models for Testing and Operational Use</td>
<td>205</td>
</tr>
<tr>
<td>11.3.1</td>
<td>A General Class of Models</td>
<td>205</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Assumptions Underlying the Reliability Growth Models</td>
<td>206</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Caution in Using Reliability Growth Models</td>
<td>207</td>
</tr>
<tr>
<td>11.4</td>
<td>Reliability Growth Modeling with Covariates</td>
<td>207</td>
</tr>
<tr>
<td>11.5</td>
<td>When to Stop Testing Software</td>
<td>208</td>
</tr>
<tr>
<td>11.6</td>
<td>Challenges and Conclusions</td>
<td>209</td>
</tr>
</tbody>
</table>

Software Reliability Modeling

James Ledoux

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>12.2</td>
<td>Basic Concepts of Stochastic Modeling</td>
<td>214</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Metrics with Regard to the First Failure</td>
<td>214</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Stochastic Process of Times of Failure</td>
<td>215</td>
</tr>
<tr>
<td>12.3</td>
<td>Black-box Software Reliability Models</td>
<td>215</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Self-exciting Point Processes</td>
<td>216</td>
</tr>
<tr>
<td>12.3.1.1</td>
<td>Counting Statistics for a Self-exciting Point Process</td>
<td>218</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>12.3.1.2 Likelihood Function for a Self-exciting Point Process</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>12.3.1.3 Reliability and Mean Time to Failure Functions</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>12.3.2 Classification of Software Reliability Models</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>12.3.2.1 0-Memory Self-exciting Point Process</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>12.3.2.2 Non-homogeneous Poisson Process Model: (\lambda(t; H_t, F_0) = f(t; F_0)) and is Deterministic</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>12.3.2.3 1-Memory Self-exciting Point Process with (\lambda(t; H_t, F_0) = f(N(t), t - T_N(t), F_0))</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>12.3.2.4 (m \geq 2)-Memory</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>12.4 White-box Modeling</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>12.5 Calibration of Model</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>12.5.1 Frequentist Procedures</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>12.5.2 Bayesian Procedure</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>12.6 Current Issues</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>12.6.1 Black-box Modeling</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>12.6.1.1 Imperfect Debugging</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>12.6.1.2 Early Prediction of Software Reliability</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>12.6.1.3 Environmental Factors</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>12.6.1.4 Conclusion</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>12.6.2 White-box Modeling</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>12.6.3 Statistical Issues</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>13 Software Availability Theory and Its Applications</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>13.2 Basic Model and Software Availability Measures</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>13.3 Modified Models</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>13.3.1 Model with Two Types of Failure</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>13.3.2 Model with Two Types of Restoration</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>13.4 Applied Models</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>13.4.1 Model with Computation Performance</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>13.4.2 Model for Hardware–Software System</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>13.5 Concluding Remarks</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>14 Software Rejuvenation: Modeling and Applications</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>14.2 Modeling-based Estimation</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>14.2.1 Examples in Telecommunication Billing Applications</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>14.2.2 Examples in a Transaction-based Software System</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>14.2.3 Examples in a Cluster System</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>14.3 Measurement-based Estimation</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>14.3.1 Time-based Estimation</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>14.3.2 Time and Workload-based Estimation</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>14.4 Conclusion and Future Work</td>
<td>262</td>
<td></td>
</tr>
</tbody>
</table>
15 Software Reliability Management: Techniques and Applications
Mitsuhiro Kimura and Shigeru Yamada 265
15.1 Introduction .. 265
15.2 Death Process Model for Software Testing Management 266
 15.2.1 Model Description .. 267
 15.2.1.1 Mean Number of Remaining Software Faults/Testing
 Cases ... 268
 15.2.1.2 Mean Time to Extinction 268
 15.2.2 Estimation Method of Unknown Parameters 268
 15.2.2.1 Case of $0 < \alpha \leq 1$ 268
 15.2.2.2 Case of $\alpha = 0$ 269
 15.2.3 Software Testing Progress Evaluation 269
 15.2.4 Numerical Illustrations 270
 15.2.5 Concluding Remarks 271
15.3 Estimation Method of Imperfect Debugging Probability 271
 15.3.1 Hidden-Markov modeling for software reliability growth
 phenomenon ... 271
 15.3.2 Estimation Method of Unknown Parameters 272
 15.3.3 Numerical Illustrations 273
 15.3.4 Concluding Remarks 274
15.4 Continuous State Space Model for Large-scale Software 274
 15.4.1 Model Description .. 275
 15.4.2 Nonlinear Characteristics of Software Debugging Speed 277
 15.4.3 Estimation Method of Unknown Parameters 277
 15.4.4 Software Reliability Assessment Measures 279
 15.4.4.1 Expected Number of Remaining Faults and Its
 Variance .. 279
 15.4.4.2 Cumulative and Instantaneous Mean Time Between
 Failures .. 279
 15.4.5 Concluding Remarks 280
15.5 Development of a Software Reliability Management Tool 280
 15.5.1 Definition of the Specification Requirement 280
 15.5.2 Object-oriented Design 281
 15.5.3 Examples of Reliability Estimation and Discussion 282
16 Recent Studies in Software Reliability Engineering
Hoang Pham ... 285
16.1 Introduction ... 285
 16.1.1 Software Reliability Concepts 285
 16.1.2 Software Life Cycle 288
16.2 Software Reliability Modeling 288
 16.2.1 A Generalized Non-homogeneous Poisson Process Model 289
 16.2.2 Application 1: The Real-time Control System 289
16.3 Generalized Models with Environmental Factors 289
 16.3.1 Parameters Estimation 292
 16.3.2 Application 2: The Real-time Monitor Systems 292
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>Cost Modeling</td>
<td>295</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Generalized Risk–Cost Models</td>
<td>295</td>
</tr>
<tr>
<td>16.5</td>
<td>Recent Studies with Considerations of Random Field Environments</td>
<td>296</td>
</tr>
<tr>
<td>16.5.1</td>
<td>A Reliability Model</td>
<td>297</td>
</tr>
<tr>
<td>16.5.2</td>
<td>A Cost Model</td>
<td>297</td>
</tr>
<tr>
<td>16.6</td>
<td>Further Reading</td>
<td>300</td>
</tr>
</tbody>
</table>

PART IV. Maintenance Theory and Testing

17 Warranty and Maintenance
D. N. P. Murthy and N. Jack
305

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>305</td>
</tr>
<tr>
<td>17.2</td>
<td>Product Warranties: An Overview</td>
<td>306</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Role and Concept</td>
<td>306</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Product Categories</td>
<td>306</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Warranty Policies</td>
<td>306</td>
</tr>
<tr>
<td>17.2.3.1</td>
<td>Warranty Policies for Standard Products Sold</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>Individually</td>
<td>306</td>
</tr>
<tr>
<td>17.2.3.2</td>
<td>Warranty Policies for Standard Products Sold in Lots</td>
<td>307</td>
</tr>
<tr>
<td>17.2.3.3</td>
<td>Warranty Policies for Specialized Products</td>
<td>307</td>
</tr>
<tr>
<td>17.2.3.4</td>
<td>Extended Warranties</td>
<td>307</td>
</tr>
<tr>
<td>17.2.3.5</td>
<td>Warranties for Used Products</td>
<td>308</td>
</tr>
<tr>
<td>17.2.4</td>
<td>Issues in Product Warranty</td>
<td>308</td>
</tr>
<tr>
<td>17.2.4.1</td>
<td>Warranty Cost Analysis</td>
<td>308</td>
</tr>
<tr>
<td>17.2.4.2</td>
<td>Warranty Servicing</td>
<td>309</td>
</tr>
<tr>
<td>17.2.5</td>
<td>Review of Warranty Literature</td>
<td>309</td>
</tr>
<tr>
<td>17.3</td>
<td>Maintenance: An Overview</td>
<td>309</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Corrective Maintenance</td>
<td>309</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Preventive Maintenance</td>
<td>310</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Review of Maintenance Literature</td>
<td>310</td>
</tr>
<tr>
<td>17.4</td>
<td>Warranty and Corrective Maintenance</td>
<td>311</td>
</tr>
<tr>
<td>17.5</td>
<td>Warranty and Preventive Maintenance</td>
<td>312</td>
</tr>
<tr>
<td>17.6</td>
<td>Extended Warranties and Service Contracts</td>
<td>313</td>
</tr>
<tr>
<td>17.7</td>
<td>Conclusions and Topics for Future Research</td>
<td>314</td>
</tr>
</tbody>
</table>

18 Mechanical Reliability and Maintenance Models
Gianpaolo Pulcini
317

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>18.2</td>
<td>Stochastic Point Processes</td>
<td>318</td>
</tr>
<tr>
<td>18.3</td>
<td>Perfect Maintenance</td>
<td>320</td>
</tr>
<tr>
<td>18.4</td>
<td>Minimal Repair</td>
<td>321</td>
</tr>
<tr>
<td>18.4.1</td>
<td>No Trend with Operating Time</td>
<td>323</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Monotonic Trend with Operating Time</td>
<td>323</td>
</tr>
<tr>
<td>18.4.2.1</td>
<td>The Power Law Process</td>
<td>324</td>
</tr>
<tr>
<td>18.4.2.2</td>
<td>The Log–Linear Process</td>
<td>325</td>
</tr>
<tr>
<td>18.4.2.3</td>
<td>Bounded Intensity Processes</td>
<td>326</td>
</tr>
</tbody>
</table>
18.4.3 Bathtub-type Intensity .. 327
18.4.3.1 Numerical Example 328
18.4.4 Non-homogeneous Poisson Process Incorporating Covariate
 Information .. 329
18.5 Imperfect or Worse Repair 330
18.5.1 Proportional Age Reduction Models 330
18.5.2 Inhomogeneous Gamma Processes 331
18.5.3 Lawless–Thiagarajah Models 333
18.5.4 Proportional Intensity Variation Model 334
18.6 Complex Maintenance Policy 335
18.6.1 Sequence of Perfect and Minimal Repairs Without Preventive
 Maintenance .. 336
18.6.2 Minimal Repairs Interspersed with Perfect Preventive
 Maintenance .. 338
18.6.3 Imperfect Repairs Interspersed with Perfect Preventive
 Maintenance .. 339
18.6.4 Minimal Repairs Interspersed with Imperfect Preventive
 Maintenance .. 340
18.6.4.1 Numerical Example 341
18.6.5 Corrective Repairs Interspersed with Preventive Maintenance
 Without Restrictive Assumptions 342
18.7 Reliability Growth .. 343
18.7.1 Continuous Models .. 344
18.7.2 Discrete Models ... 345

19 Preventive Maintenance Models: Replacement, Repair, Ordering, and Inspection
Tadashi Dohi, Naoto Kaio and Shunji Osaki 349
19.1 Introduction ... 349
19.2 Block Replacement Models .. 350
19.2.1 Model I ... 350
19.2.2 Model II ... 352
19.2.3 Model III ... 352
19.3 Age Replacement Models ... 354
19.3.1 Basic Age Replacement Model 354
19.4 Ordering Models ... 356
19.4.1 Continuous-time Model 357
19.4.2 Discrete-time Model .. 358
19.4.3 Combined Model with Minimal Repairs 359
19.5 Inspection Models .. 361
19.5.1 Nearly Optimal Inspection Policy by Kaio and Osaki (K&O
 Policy) ... 362
19.5.2 Nearly Optimal Inspection Policy by Munford and Shahani
 (M&S Policy) .. 363
19.5.3 Nearly Optimal Inspection Policy by Nakagawa and Yasui
 (N&Y Policy) .. 363
19.6 Concluding Remarks .. 363
20 Maintenance and Optimum Policy
Toshio Nakagawa

20.1 Introduction .. 367
20.2 Replacement Policies 368
 20.2.1 Age Replacement 368
 20.2.2 Block Replacement 370
 20.2.2.1 No Replacement at Failure 370
 20.2.2.2 Replacement with Two Variables 371
 20.2.3 Periodic Replacement 371
 20.2.3.1 Modified Models with Two Variables ... 372
 20.2.3.2 Replacement at N Variables 373
 20.2.4 Other Replacement Models 1 373
 20.2.4.1 Replacements with Discounting 373
 20.2.4.2 Discrete Replacement Models 374
 20.2.4.3 Replacements with Two Types of Unit ... 375
 20.2.4.4 Replacement of a Shock Model 376
 20.2.5 Remarks 377
20.3 Preventive Maintenance Policies 378
 20.3.1 One-unit System 378
 20.3.1.1 Interval Reliability 379
 20.3.2 Two-unit System 380
 20.3.3 Imperfect Preventive Maintenance 381
 20.3.3.1 Imperfect with Probability 383
 20.3.3.2 Reduced Age 383
 20.3.4 Modified Preventive Maintenance 384
20.4 Inspection Policies 385
 20.4.1 Standard Inspection 386
 20.4.2 Inspection with Preventive Maintenance 387
 20.4.3 Inspection of a Storage System 388

21 Optimal Imperfect Maintenance Models
Hongzhou Wang and Hoang Pham

21.1 Introduction 397
21.2 Treatment Methods for Imperfect Maintenance 399
 21.2.1 Treatment Method 1 399
 21.2.2 Treatment Method 2 400
 21.2.3 Treatment Method 3 401
 21.2.4 Treatment Method 4 402
 21.2.5 Treatment Method 5 403
 21.2.6 Treatment Method 6 403
 21.2.7 Treatment Method 7 403
 21.2.8 Other Methods 404
21.3 Some Results on Imperfect Maintenance 404
 21.3.1 A Quasi-renewal Process and Imperfect Maintenance 404
 21.3.1.1 Imperfect Maintenance Model A 405
 21.3.1.2 Imperfect Maintenance Model B 405
21.3.3 Imperfect Maintenance Model C 405
21.3.4 Imperfect Maintenance Model D 407
21.3.5 Imperfect Maintenance Model E 408
21.3.2 Optimal Imperfect Maintenance of \(k\)-out-of-\(n\) Systems 409
21.4 Future Research on Imperfect Maintenance 411
21.4 Appendix .. 412
21.4.1 Acronyms and Definitions 412
21.4.2 Exercises 412
21.5 Appendix .. 412

22 Accelerated Life Testing
Elsayed A. Elsayed 415
22.1 Introduction 415
22.2 Design of Accelerated Life Testing Plans 416
22.2.1 Stress Loadings 416
22.2.2 Types of Stress 416
22.3 Accelerated Life Testing Models 417
22.3.1 Parametric Statistics-based Models 418
22.3.2 Acceleration Model for the Exponential Model 419
22.3.3 Acceleration Model for the Weibull Model 420
22.3.4 The Arrhenius Model 421
22.3.5 Non-parametric Accelerated Life Testing Models: Cox's Model 424
22.4 Extensions of the Proportional Hazards Model 426

23 Accelerated Test Models with the Birnbaum–Saunders Distribution
W. Jason Owen and William J. Padgett 429
23.1 Introduction 429
23.1.1 Accelerated Testing 430
23.1.2 The Birnbaum–Saunders Distribution 431
23.2 Accelerated Birnbaum–Saunders Models 431
23.2.1 The Power-law Accelerated Birnbaum–Saunders Model ... 432
23.2.2 Cumulative Damage Models 432
23.2.2.1 Additive Damage Models 433
23.2.2.2 Multiplicative Damage Models 434
23.3 Inference Procedures with Accelerated Life Models 435
23.4 Estimation from Experimental Data 437
23.4.1 Fatigue Failure Data 437
23.4.2 Micro-Composite Strength Data 437

24 Multiple-steps Step-stress Accelerated Life Test
Loon-Ching Tang 441
24.1 Introduction 441
24.2 Cumulative Exposure Models 443
24.3 Planning a Step-stress Accelerated Life Test 445
24.3.1 Planning a Simple Step-stress Accelerated Life Test 446
24.3.1.1 The Likelihood Function 446
24.3.1.2 Setting a Target Accelerating Factor 447
24.3.1.3 Maximum Likelihood Estimator and Asymptotic Variance 447
24.3.1.4 Nonlinear Programming for Joint Optimality in Hold Time and Low Stress 447
24.3.2 Multiple-steps Step-stress Accelerated Life Test Plans 448
24.4 Data Analysis in the Step-stress Accelerated Life Test 450
24.4.1 Multiply Censored, Continuously Monitored Step-stress Accelerated Life Test 450
24.4.1.1 Parameter Estimation for Weibull Distribution 451
24.4.2 Read-out Data .. 451
24.5 Implementation in Microsoft ExcelTM .. 453
24.6 Conclusion ... 454

25 Step-stress Accelerated Life Testing
Chengjie Xiong ... 457

25.1 Introduction ... 457
25.2 Step-stress Life Testing with Constant Stress-change Times 457
25.2.1 Cumulative Exposure Model ... 457
25.2.2 Estimation with Exponential Data 459
25.2.3 Estimation with Other Distributions 462
25.2.4 Optimum Test Plan .. 463
25.3 Step-stress Life Testing with Random Stress-change Times 463
25.3.1 Marginal Distribution of Lifetime .. 463
25.3.2 Estimation .. 467
25.3.3 Optimum Test Plan .. 467
25.4 Bibliographical Notes .. 468

PART V. Practices and Emerging Applications

26 Statistical Methods for Reliability Data Analysis
Michael J. Phillips .. 475

26.1 Introduction ... 475
26.2 Nature of Reliability Data .. 475
26.3 Probability and Random Variables ... 478
26.4 Principles of Statistical Methods ... 479
26.5 Censored Data ... 480
26.6 Weibull Regression Model .. 483
26.7 Accelerated Failure-time Model ... 485
26.8 Proportional Hazards Model .. 486
26.9 Residual Plots for the Proportional Hazards Model 489
26.10 Non-proportional Hazards Models ... 490
26.11 Selecting the Model and the Variables 491
26.12 Discussion ... 491
27 The Application of Capture–Recapture Methods in Reliability Studies
Paul S. F. Yip, Yan Wang and Anne Chao 493

27.1 Introduction .. 493
27.2 Formulation of the Problem 495
 27.2.1 Homogeneous Model with Recapture 496
 27.2.2 A Seeded Fault Approach Without Recapture 498
 27.2.3 Heterogeneous Model 499
 27.2.3.1 Non-parametric Case: \(\lambda_i(t) = \gamma_i \alpha t \) 499
 27.2.3.2 Parametric Case: \(\lambda_i(t) = \gamma_i \) 501
27.3 A Sequential Procedure 504
27.4 Real Examples .. 504
27.5 Simulation Studies .. 505
27.6 Discussion .. 508

28 Reliability of Electric Power Systems: An Overview
Roy Billinton and Ronald N. Allan 511

28.1 Introduction .. 511
28.2 System Reliability Performance 512
28.3 System Reliability Prediction 515
 28.3.1 System Analysis .. 515
 28.3.2 Predictive Assessment at HLI 516
 28.3.3 Predictive Assessment at HLII 518
 28.3.4 Distribution System Reliability Assessment 519
 28.3.5 Predictive Assessment at HLIII 520
28.4 System Reliability Data 521
 28.4.1 Canadian Electricity Association Database 522
 28.4.2 Canadian Electricity Association Equipment Reliability
 Information System Database for HLI Evaluation 523
 28.4.3 Canadian Electricity Association Equipment Reliability
 Information System Database for HLII Evaluation 523
 28.4.4 Canadian Electricity Association Equipment Reliability
 Information System Database for HLIII Evaluation 524
28.5 System Reliability Worth 525
28.6 Guide to Further Study 527

29 Human and Medical Device Reliability
B. S. Dhillon .. 529

29.1 Introduction .. 529
29.2 Human and Medical Device Reliability Terms and Definitions 529
29.3 Human Stress—Performance Effectiveness, Human Error Types, and
 Causes of Human Error .. 530
29.4 Human Reliability Analysis Methods 531
 29.4.1 Probability Tree Method 531
 29.4.2 Fault Tree Method .. 532
 29.4.3 Markov Method ... 534
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.5</td>
<td>Human Unreliability Data Sources</td>
<td>535</td>
</tr>
<tr>
<td>29.6</td>
<td>Medical Device Reliability Related Facts and Figures</td>
<td>535</td>
</tr>
<tr>
<td>29.7</td>
<td>Medical Device Recalls and Equipment Classification</td>
<td>536</td>
</tr>
<tr>
<td>29.8</td>
<td>Human Error in Medical Devices</td>
<td>537</td>
</tr>
<tr>
<td>29.9</td>
<td>Tools for Medical Device Reliability Assurance</td>
<td>537</td>
</tr>
<tr>
<td>29.9.1</td>
<td>General Method</td>
<td>538</td>
</tr>
<tr>
<td>29.9.2</td>
<td>Failure Modes and Effect Analysis</td>
<td>538</td>
</tr>
<tr>
<td>29.9.3</td>
<td>Fault Tree Method</td>
<td>538</td>
</tr>
<tr>
<td>29.9.4</td>
<td>Markov Method</td>
<td>538</td>
</tr>
<tr>
<td>29.10</td>
<td>Data Sources for Performing Medical Device Reliability Studies</td>
<td>539</td>
</tr>
<tr>
<td>29.11</td>
<td>Guidelines for Reliability Engineers with Respect to Medical Devices</td>
<td>539</td>
</tr>
<tr>
<td>30</td>
<td>Probabilistic Risk Assessment</td>
<td>543</td>
</tr>
<tr>
<td>30.1</td>
<td>Introduction</td>
<td>543</td>
</tr>
<tr>
<td>30.2</td>
<td>Historical Comments</td>
<td>544</td>
</tr>
<tr>
<td>30.3</td>
<td>Probabilistic Risk Assessment Methodology</td>
<td>546</td>
</tr>
<tr>
<td>30.4</td>
<td>Engineering Risk Versus Environmental Risk</td>
<td>549</td>
</tr>
<tr>
<td>30.5</td>
<td>Risk Measures and Public Impact</td>
<td>550</td>
</tr>
<tr>
<td>30.6</td>
<td>Transition to Risk-informed Regulation</td>
<td>553</td>
</tr>
<tr>
<td>30.7</td>
<td>Some Successful Probabilistic Risk Assessment Applications</td>
<td>553</td>
</tr>
<tr>
<td>30.8</td>
<td>Comments on Uncertainty</td>
<td>554</td>
</tr>
<tr>
<td>30.9</td>
<td>Deterministic, Probabilistic, Prescriptive, Performance-based</td>
<td>554</td>
</tr>
<tr>
<td>30.10</td>
<td>Outlook</td>
<td>555</td>
</tr>
<tr>
<td>31</td>
<td>Total Dependability Management</td>
<td>559</td>
</tr>
<tr>
<td>31.1</td>
<td>Introduction</td>
<td>559</td>
</tr>
<tr>
<td>31.2</td>
<td>Background</td>
<td>559</td>
</tr>
<tr>
<td>31.3</td>
<td>Total Dependability Management</td>
<td>560</td>
</tr>
<tr>
<td>31.4</td>
<td>Management System Components</td>
<td>561</td>
</tr>
<tr>
<td>31.5</td>
<td>Conclusions</td>
<td>564</td>
</tr>
<tr>
<td>32</td>
<td>Total Quality for Software Engineering Management</td>
<td>567</td>
</tr>
<tr>
<td>32.1</td>
<td>Introduction</td>
<td>567</td>
</tr>
<tr>
<td>32.1.1</td>
<td>The Meaning of Software Quality</td>
<td>567</td>
</tr>
<tr>
<td>32.1.2</td>
<td>Approaches in Software Quality Assurance</td>
<td>569</td>
</tr>
<tr>
<td>32.2</td>
<td>The Practice of Software Engineering</td>
<td>571</td>
</tr>
<tr>
<td>32.2.1</td>
<td>Software Lifecycle</td>
<td>571</td>
</tr>
<tr>
<td>32.2.2</td>
<td>Software Development Process</td>
<td>574</td>
</tr>
<tr>
<td>32.2.3</td>
<td>Software Measurements</td>
<td>575</td>
</tr>
<tr>
<td>32.3</td>
<td>Software Quality Models</td>
<td>577</td>
</tr>
<tr>
<td>32.3.1</td>
<td>Measuring Aspects of Quality</td>
<td>577</td>
</tr>
<tr>
<td>32.3.2</td>
<td>Software Reliability Engineering</td>
<td>577</td>
</tr>
<tr>
<td>32.3.3</td>
<td>Effort and Cost Models</td>
<td>579</td>
</tr>
</tbody>
</table>
32.4 Total Quality Management for Software Engineering 580
 32.4.1 Deming’s Theory ... 580
 32.4.2 Continuous Improvement 581
32.5 Conclusions ... 582

33 Software Fault Tolerance
Xiaolin Teng and Hoang Pham ... 585
 33.1 Introduction ... 585
 33.2 Software Fault-tolerant Methodologies 586
 33.2.1 N-version Programming 586
 33.2.2 Recovery Block ... 586
 33.2.3 Other Fault-tolerance Techniques 587
 33.3 N-version Programming Modeling 588
 33.3.1 Basic Analysis ... 588
 33.3.1.1 Data-domain Modeling 588
 33.3.1.2 Time-domain Modeling 589
 33.3.2 Reliability in the Presence of Failure Correlation 590
 33.3.3 Reliability Analysis and Modeling 591
 33.4 Generalized Non-homogeneous Poisson Process Model Formulation 594
 33.5 Non-homogeneous Poisson Process Reliability Model for N-version
 Programming Systems .. 595
 33.5.1 Model Assumptions ... 597
 33.5.2 Model Formulations .. 599
 33.5.2.1 Mean Value Functions 599
 33.5.2.2 Common Failures 600
 33.5.2.3 Concurrent Independent Failures 601
 33.5.3 N-version Programming System Reliability 601
 33.5.4 Parameter Estimation 602
 33.6 N-version programming–Software Reliability Growth 602
 33.6.1 Applications of N-version Programming–Software Reliability
 Growth Models .. 602
 33.6.1.1 Testing Data .. 602
 33.7 Conclusion ... 610

34 Markovian Dependability/Performability Modeling of Fault-tolerant Systems
Juan A. Carrasco .. 613
 34.1 Introduction ... 613
 34.2 Measures .. 615
 34.2.1 Expected Steady-state Reward Rate 617
 34.2.2 Expected Cumulative Reward Till Exit of a Subset of States . 618
 34.2.3 Expected Cumulative Reward During Stay in a Subset of States 618
 34.2.4 Expected Transient Reward Rate 619
 34.2.5 Expected Averaged Reward Rate 619
 34.2.6 Cumulative Reward Distribution Till Exit of a Subset of States 619
 34.2.7 Cumulative Reward Distribution During Stay in a Subset of States 620
34.2.8 Cumulative Reward Distribution 621
34.2.9 Extended Reward Structures 621
34.3 Model Specification ... 622
34.4 Model Solution .. 625
34.5 The Largeness Problem .. 630
34.6 A Case Study .. 632
34.7 Conclusions .. 640

35 Random-request Availability
Kang W. Lee .. 643

35.1 Introduction .. 643
35.2 System Description and Definition 644
35.3 Mathematical Expression for the Random-request Availability
 35.3.1 Notation ... 645
 35.3.2 Mathematical Assumptions 645
 35.3.3 Mathematical Expressions 645
35.4 Numerical Examples ... 647
35.5 Simulation Results .. 647
35.6 Approximation .. 651
35.7 Concluding Remarks ... 652

Index
.. 653
Handbook of Reliability Engineering
Pham, H. (Ed.)
2003, XXXI, 663 p. 1550 illus., 1539 illus. in color.,
Hardcover