Contents

1 Emotion: A Gateway to Wisdom Engineering ... 1
 Shuichi Fukuda
 1.1 Introduction ... 1
 1.2 From Designer-centric to User-centric Design 2
 1.3 Role of Emotion in Decision Making ... 2
 1.4 The Creative Customer ... 3
 1.5 Emotion = Move Out .. 4
 1.6 Babies .. 5
 1.7 Quality Function Deployment (QFD) .. 5
 1.8 The Fluctuation Equation .. 6
 1.9 The Emotion Equation .. 6
 1.10 Rationalizing Our Actions Using Emotion 6
 1.11 Closed and Open Worlds ... 7
 1.12 Reflective Practice .. 8
 1.13 *Homo Faber* ... 8
 1.14 *Homo Ludens* .. 8
 1.15 Pragmatism .. 9
 1.16 Learning from Failure .. 10
 1.17 Maslow’s Hierarchy of Human Needs ... 11
 1.18 Short-duration and Long-duration Emotions 13
 1.19 Continuous Prototyping ... 14
 1.20 Creating Markets .. 16
 1.21 One Time Value and Lifetime Value .. 16
 1.22 Concluding Remarks ... 18
References .. 19
2 SHOJI: A Communication Terminal for Sending and Receiving Ambient Information
Masaki Shuzo and Ichiro Yamada
2.1 Introduction ... 21
2.2 Ambient Information .. 22
 2.2.1 Definition ... 22
 2.2.2 Related Works .. 23
 2.2.3 Our Approach .. 24
2.3 Target Usage .. 24
2.4 Technical Functional Requirements .. 25
2.5 Questionnaire .. 26
 2.5.1 Overview ... 26
 2.5.2 Results .. 27
2.6 Prototype Terminal ... 29
2.7 Emotion Extraction from Voice .. 31
 2.7.1 Voice/Non-voice Recognition Process 31
 2.7.2 Speaker Recognition Process ... 32
 2.7.3 Emotion Recognition Process ... 33
2.8 Field Experiment ... 34
 2.8.1 Method .. 34
 2.8.2 Results .. 35
2.9 Conclusion ... 37
References ... 37

3 A Mixed Reality-based Emotional Interactions and Communications for Manufacturing Skills Training
Keiichi Watanuki
3.1 Introduction ... 40
3.2 Skills Transfer .. 41
 3.2.1 Present Situation and Problem Points Regarding Methods of Skills Transfer ... 41
 3.2.2 New Methods of Skills Transfer ... 43
 3.2.3 Knowledge Creation and Skills Transfer by Sharing of “Ba” ... 44
 3.2.4 Conversation Analysis and Extraction of Knowledge 46
 3.2.5 Proficiency and Corporeality ... 47
3.3 Skills Transfer and Human Resource Development in the Foundry Industry ... 48
 3.3.1 Knowledge and Skills Transfer of Casting Technology 48
 3.3.2 New System for Skills Transfer ... 49
 3.3.3 Skills Transfer System Using Multimedia Technology 49
 3.3.4 Casting Skills Acquisition System Using VR Space 51
 3.3.5 Skills Transfer and Human Resources Development Through Emotional Interaction in VR Space 53
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.6</td>
<td>Skills Transfer with an Annotation Display System</td>
<td>54</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Work Training by OJT and Sharing a Base in a Virtual Training System</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Augmented Reality-based Training System</td>
<td>57</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Augmented Reality</td>
<td>57</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Training System for Pouring</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Work Support for Elderly or Female Workers</td>
<td>59</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Aging Society and Labor Problems</td>
<td>59</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Work Support for the Work of the Elderly or Female Workers</td>
<td>60</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Construction of a Teleworking Environment as a Work Form with Variety</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

4 Exploitation of Designers and Customers’ Skills and Creativity in Product Design and Engineering

- Monica Bordegoni
 - 4.1 Introduction ... 63
 - 4.2 One Product, many Customers .. 65
 - 4.3 The Product Development Process .. 66
 - 4.3.1 Designers and Engineers ... 68
 - 4.3.2 Tools for Design and Engineering 70
 - 4.3.3 Methods and Tools for Product Testing 71
 - 4.3.4 Remarks About the Product Development Process 72
 - 4.4 A Paradigm Shift in the Product Development Process 72
 - 4.4.1 Product Customization and Participatory Design 73
 - 4.4.2 PDP Scenario Based on User-centered Design 74
 - 4.5 Design Tools for Product Designers and Customers 75
 - 4.5.1 Enactive Interfaces ... 75
 - 4.5.2 Design Tools Based on Enactive Interfaces 78
 - 4.5.3 An Example: Enactive Interface for Shape Evaluation 79
 - 4.5.4 Remarks ... 81
 - 4.6 Product Prototyping and Testing .. 82
 - 4.6.1 An Example: Mixed Reality Application for Product Evaluation | 82
 - 4.7 Conclusion .. 84
 - References .. 84

5 A Study on the Relationships Between Drivers’ Emotion and HUD Image Designs

- Shana Smith and Shih-Hang Fu
 - 5.1 Introduction ... 87
 - 5.2 Experiment Procedures ... 88
 - 5.2.1 The First Experiment ... 89
5.2.2 The Second Experiment ... 96
5.3 Conclusions ... 100
References.. 100

6 Emotional Design in the Virtual Environment 103
Tetsuro Ogi
6.1 Introduction ... 103
6.2 Design in the Virtual Reality Environment 104
6.2.1 Interactive Visualization .. 104
6.2.2 Haptic Sensation .. 106
6.2.3 Application of VR to Design .. 107
6.3 Design Using an Augmented Reality Environment 108
6.3.1 Integration of Virtual Image with Real World 108
6.3.2 AR View ... 108
6.3.3 Application of AR to Design .. 110
6.4 Emotional Communication .. 111
6.4.1 Tele-immersion Environment .. 111
6.4.2 Video Avatar Technology .. 112
6.4.3 Video Avatar Communication ... 114
6.5 Education of Emotional Design ... 115
References.. 116

7 Emotional Robot Competence and Its Use in Robot Behavior Control ... 119
Natascha Esau and Lisa Kleinjohann
7.1 Introduction ... 119
7.2 Aspects of Emotional Competence in Human–Robot Interaction ... 121
7.3 Related Work... 123
7.4 Modeling of Emotions ... 124
7.5 Emotion Recognition ... 126
7.5.1 Overview of VISBER .. 126
7.5.2 Overview of PROSBER ... 127
7.5.3 Fuzzy Emotion Classification .. 128
7.6 Dynamics of Emotions and Drives .. 129
7.6.1 Drives ... 131
7.6.2 Emotions .. 133
7.7 Control of Robot Behavior by Emotions and Drives 135
7.7.1 Behavior System .. 136
7.7.2 Control of the Behavior System by the Emotion Engine 137
7.8 Example of MEXI’s Emotional Competence 138
7.9 Conclusions ... 141
References.. 141
8 Shape Design and Modeling with 1/f Fluctuation Characteristics
Katsuhiro Maekawa
8.1 Introduction .. 143
8.2 Shape Extraction from a Japanese Teacup 144
 8.2.1 Experimental Method .. 144
 8.2.2 Results and Discussion 148
8.3 Shape Design with 1/f Fluctuation Characteristics 150
 8.3.1 Use of Measured Teacup Characteristics 150
 8.3.2 Use of Mathematical Patterns 152
 8.3.3 Use of Artificial Patterns 154
8.4 Modeling by Rapid Prototyping 156
8.5 Summary ... 158
References .. 159

9 Human-entrained Embodied Interaction and Communication Technology
Tomio Watanabe
9.1 Introduction .. 161
9.2 Embodied Virtual Communication System 163
9.3 Speech-driven Embodied Interaction System 165
9.4 Embodied Interaction and Communication Technology ... 170
9.5 Conclusions ... 176
References .. 176

10 Personal Cognitive Characteristics in Affordance Perception: Case Study in a Lobby
Y.S. Kim, J.Y. Jeong, M.K. Kim, S.W. Lee, and M. Kim
10.1 Introduction ... 180
10.2 Background .. 182
 10.2.1 Affordance ... 182
 10.2.2 Personal Creativity Modes 183
10.3 Case Study – Experiments .. 186
 10.3.1 Participants and User Tasks 186
 10.3.2 Activities and Related Affordances 188
 10.3.3 Personal Creativity Modes 190
10.4 Case Study – Analysis on Personal Creativity Modes and Actives ... 193
 10.4.1 Task: Waiting (T-1) .. 193
 10.4.2 Task: Eating a Snack and Reading the Magazine (T-2) ... 195
 10.4.3 Task: Sketching on Paper (T-3) 198
 10.4.4 Task: Lacing Shoes and Shaking Sand (T-4) 202
 10.4.5 Discussions ... 204
10.5 Conclusions ... 205
References .. 205
11 Emotion-oriented Human–Computer Interaction .. 207
Toshiyuki Yamashita, Ahmad Eibo, Takumi Ichimura, and Kazuya Mera
11.1 Introduction .. 207
11.2 Facial Expressions as a Human Interface ... 208
 11.2.1 Face Selection by Fuzzy Reasoning Model 208
 11.2.2 An Application of the Model to e-mail 210
 11.2.3 Comparisons Among Faces ... 213
 11.2.4 User’s Faces .. 214
 11.2.5 Noh Mask .. 216
11.3 Verbal Communication ... 219
11.4 Conclusions ... 220
References... 221

12 BROAFERENCE: A Prototype of an Emotion-based TV Quality Rating System .. 223
Terumasa Aoki and Uwe Kowalik
12.1 Current TV Rating System and Its Problems 223
12.2 System Overview: the BROAFERENCE System 225
12.3 Face Detection, Face Feature Point Detection, and Tracking 226
 12.3.1 Abstract of Face Detection, Face Feature Point Detection, and Tracking .. 226
 12.3.2 Emotional Parameters ... 227
 12.3.3 Interest Parameters .. 229
12.4 Global Head Motion Compensation .. 229
 12.4.1 How to Compensate Global Head Motion 229
 12.4.2 Evaluation ... 231
12.5 Action Unit Detection with Artificial Neural Networks 233
 12.5.1 How to Detect Action Units ... 233
 12.5.2 Classifier Training ... 235
 12.5.3 Evaluation ... 236
12.6 Gaze Tracking Approach ... 237
 12.6.1 How to Estimate Gaze Information ... 237
 12.6.2 Mapping to 3D World Coordinates ... 237
 12.6.3 Evaluation ... 240
12.7 Other Applications .. 241
 12.7.1 Content Indexing Based on the Emotional Component 241
 12.7.2 Remote Health Care Prevention and Life Support 242
 12.7.3 Advanced Human–Computer Interface 243
12.8 Conclusion ... 243
References... 244
13 Shape Evaluation Properties in Real Space and Virtual Space 247
Masashi Okubo
13.1 Introduction ... 248
13.2 System Evaluation ... 249
 13.2.1 3D Models and Objects Used in the Experiment 249
 13.2.2 Sensory Evaluation ... 251
 13.2.3 Experimental Results ... 251
13.3 Influence of Viewpoint on Shape Evaluation in Virtual Space 254
 13.3.1 Three Types of Viewpoint ... 254
 13.3.2 Influence of Avatars’ Forearms on 3D Shape Evaluation 255
 13.3.3 Experimental Results ... 255
 13.3.4 Influence of Avatar’s Upper Body Image 258
13.4 Conclusions ... 260
References ... 261

14 Affective Driving ... 263
Yingzi Lin
14.1 Introduction ... 263
14.2 Natural-contact Biosensor Method ... 266
14.3 Inference of Human Emotion .. 266
14.4 Emotion Versus Performance in Driving 270
14.5 Issues and Future Research Directions 272
14.6 Conclusions ... 273
References ... 273

15 Approximate Multi-objective Optimization of Medical Foot Support ... 275
Masao Arakawa
15.1 Introduction ... 275
15.2 Approximate Multi-objective Optimization Using Convolute RBF .. 277
 15.2.1 Convolute RBF ... 277
 15.2.2 Satisficing Method ... 277
 15.2.3 Data Addition ... 278
15.3 Arch Support .. 279
15.4 Model of an Arch Support ... 279
 15.4.1 Spline Curve .. 279
 15.4.2 How to Make a Foot Support Model 280
15.5 Design of Personal Medical Foot Support 281
 15.5.1 Initial Pattern ... 282
 15.5.2 Ideal Position of Arch ... 282
 15.5.3 Detection from X-ray Digital Data 282
 15.5.4 Procedure of the Proposed Method 283
15.6 Validation Test of Personal Medical Foot Support.......................... 284
15.6.1 Myoelectric Potential Measurement... 285
15.6.2 Experiment.. 285
15.6.3 Results... 286
15.7 Conclusions... 286
References.. 287

16 Kansei Quality in Product Design... 289
Hideyoshi Yanagisawa
16.1 What Is Kansei Quality?... 289
16.2 Approaches Towards Kansei Quality in Product Design 290
16.3 Towards Diverse and Latent Kansei... 291
16.4 A Method for Extraction of Diverse and Latent Evaluation
Criteria of Kansei Quality... 292
16.4.1 Extraction of Multiple Kansei Scales Considering
Diverse Kansei Qualities.. 293
16.4.2 Strategies of Setting Design Feature Values.............................. 295
16.5 Case Study: Product Sound Quality .. 296
16.5.1 Sound Quality Metric as Design Parameters............................. 297
16.5.2 Sensory Test Using Existing Samples
(First Experiment).. 298
16.5.3 Extracting Patterns of Personal Kansei Scales......................... 299
16.5.4 Multiple Scales of a Target Kansei Quality................................. 301
16.5.5 Unexplored Design Area in Feature Space.............................. 302
16.5.6 Gradient of a Target Kansei Quality in Feature Space.............. 302
16.5.7 Setting Feature Values and Creating New Sounds................... 304
16.5.8 Sensory Test Using Composite Samples
(Second Sensory Test).. 304
16.5.9 Comparison of SD Scales Obtained from First
and Second Experiment Data... 305
16.5.10 Finding Kansei Factors... 306
References.. 309

17 Emotion in Engineering Design Teams.. 311
Neeraj Sonalkar, Malte Jung, Ade Mabogunje
17.1 Introduction... 311
17.2 Why Study Emotion in Engineering Design?................................. 312
17.3 Perspectives in Emotion Research.. 313
17.3.1 Assigning the Label “Emotion”.. 315
17.3.2 How Does an Emotion Come About?... 316
17.3.3 Distinguishing Between Different Emotions............................ 317
17.3.4 Emotion in the Context of Current Studies............................... 317
17.3.5 Measuring Emotion... 318
17.4 Research Study 1 – The Role of Emotion in Group Ideation
in Engineering Design Teams... 319
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5</td>
<td>Research Study 2 – Team Conflict in Engineering Design Teams</td>
</tr>
<tr>
<td>17.6</td>
<td>The Cultural Context of Emotion</td>
</tr>
<tr>
<td>17.7</td>
<td>Looking Forward</td>
</tr>
<tr>
<td>17.8</td>
<td>Conclusion</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Measurement of Wakuwaku Feeling of Interactive Systems Using Biological Signals</td>
</tr>
<tr>
<td>Michiko Ohkura, Masahide Hamano, Hiroyuki Watanabe, and Tetsuro Aoto</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>18.2</td>
<td>Indexes of the Wakuwaku Model</td>
</tr>
<tr>
<td>18.3</td>
<td>Evaluation Experiment</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Construction of Evaluation Systems</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Experiment to Evaluate the Systems</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Experimental Results</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Derivation of Wakuwaku Model</td>
</tr>
<tr>
<td>18.3.5</td>
<td>Confirmation of Wakuwaku Model</td>
</tr>
<tr>
<td>18.4</td>
<td>Experiment 2</td>
</tr>
<tr>
<td>18.4.1</td>
<td>System Construction</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Experiment to Evaluate the Systems</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Discussion</td>
</tr>
<tr>
<td>18.5</td>
<td>Conclusion</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Footwear Fitting Design</td>
</tr>
<tr>
<td>Tsuyoshi Nishiwaki</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>19.1.1</td>
<td>Running Shoe Construction</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Property Requirements</td>
</tr>
<tr>
<td>19.1.3</td>
<td>Running Shoe Design Flow</td>
</tr>
<tr>
<td>19.2</td>
<td>Fitting</td>
</tr>
<tr>
<td>19.3</td>
<td>Optical Measuring Instrument</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Current Technique</td>
</tr>
<tr>
<td>19.3.2</td>
<td>New Technique</td>
</tr>
<tr>
<td>19.4</td>
<td>Evaluation Method of Shoes Fitting</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Definition of Measurement Areas</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Measurement</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Measurement Results</td>
</tr>
<tr>
<td>19.4.4</td>
<td>Fitting Quantitative Evaluation Method</td>
</tr>
<tr>
<td>19.4.5</td>
<td>Validity Checking</td>
</tr>
<tr>
<td>19.5</td>
<td>Design Examples</td>
</tr>
<tr>
<td>19.6</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>
20 Psychological Teamology, Emotional Engineering, and the Myers–Briggs Type Indicator (MBTI) .. 365
Douglass J. Wilde

20.1 Introduction ... 365
20.2 Underlying Psychological Theory 366
20.3 Cognitive Modes .. 367
 20.3.1 Relative Scores and Coupled Attitudes 369
 20.3.2 Graphical Interpretation .. 370
20.4 Team Construction ... 371
20.5 Team Organization ... 372
20.6 Conclusions ... 374
References .. 374

21 Designing Emotional and Creative Motion 377
Toshiharu Taura and Yukari Nagai

21.1 Introduction ... 377
 21.1.1 Emotion and Design .. 377
 21.1.2 Designing the Emotional and Creative Motion 378
21.2 Method of Designing Emotional and Creative Motion 379
 21.2.1 Analogy to Natural Objects 379
 21.2.2 Emphatic Blending of Motions 380
 21.2.3 Outline of Proposed Method 380
21.3 Detailed Method and Example 381
 21.3.1 Designing Emotional and Creative Motion
 by Focusing on Rhythmic Features 381
 21.3.2 Example of Designing an Emotional and Creative
 Motion Using the Proposed Method 383
21.4 Summary and Conclusions .. 386
References .. 387

About the Editor ... 389

Index ... 391