Contents

1 Multi-state Systems in Nature and in Engineering

- 1.1 Multi-state Systems in the Real World: General Concepts
- 1.2 Main Definitions and Properties
 - 1.2.1 Generic Multi-state System Model
 - 1.2.2 Main Properties of Multi-state Systems
- 1.3 Multi-state System Reliability and Its Measures
 - 1.3.1 Acceptable and Unacceptable States. Failure Criteria
 - 1.3.2 Relevancy and Coherency in Multi-state System Reliability Context
 - 1.3.3 Multi-state Systems Reliability Measures

References

2 Modern Stochastic Process Methods for Multi-state System Reliability Assessment

- 2.1 General Concepts of Stochastic Process Theory
- 2.2 Markov Models: Discrete-time Markov Chains
 - 2.2.1 Basic Definitions and Properties
 - 2.2.2 Computation of n-step Transition Probabilities and State Probabilities
- 2.3 Markov Models: Continuous-time Markov Chains
 - 2.3.1 Basic Definitions and Properties
 - 2.3.2 Markov Models for the Evaluating Reliability of Multi-state Elements
 - 2.3.3 Markov Models for Evaluating the Reliability of Multi-state Systems
- 2.4 Markov Reward Models
 - 2.4.1 Basic Definition and Model Description
 - 2.4.2 Computation of Multi-state System Reliability Measures Using Markov Reward Models
- 2.5 Semi-Markov Models
 - 2.5.1 Embedded Markov Chain and Definition of Semi-Markov Process
2.5.2 Evaluation of Reliability Indices Based on Semi-Markov Processes ... 105
References .. 113

3 Statistical Analysis of Reliability Data for Multi-state Systems 117
 3.1 Basic Concepts of Statistical Estimation Theory 117
 3.1.1 Properties of Estimators .. 118
 3.1.2 Main Estimation Methods ... 120
 3.2 Classical Parametric Estimation for Binary-state System 127
 3.2.1 Basic Considerations ... 127
 3.2.2 Exponential Distribution Point Estimation 128
 3.2.3 Interval Estimation for Exponential Distribution 131
 3.3 Estimation of Transition Intensities for via Output Performance Observations .. 132
 3.3.1 Multi-state Markov Model and Observed Reliability Data.
 Problem Formulation ... 132
 3.3.2 Method Description ... 135
 3.3.3 Algorithm for Point Estimation of Transition Intensities
 for Multi-state Systems ... 138
 3.3.4 Interval Estimation of Transition Intensities for Multi-state System... 139
References .. 142

4 Universal Generating Function Method .. 143
 4.1 Mathematical Fundamentals .. 143
 4.1.1 Generating Functions ... 144
 4.1.2 Moment Generating Functions and the z-transform 148
 4.1.3 Universal Generating Operator and Universal Generating Function ... 152
 4.1.4 Generalized Universal Generating Operator 155
 4.1.5 Universal Generating Function Associated with Stochastic
 Processes .. 158
 4.2 Universal Generating Function Technique 159
 4.2.1 Like-term Collection and Recursive Procedure 159
 4.2.2 Evaluating Multi-state System Reliability Indices Using Universal Generating Functions ... 162
 4.2.3 Properties of Composition Operators 167
 4.2.4 Universal Generating Function of Subsystems with Elements
 Connected in Series .. 170
 4.2.5 Universal Generating Function of Subsystems with Elements
 Connected in Parallel ... 172
 4.2.6 Universal Generating Function of Series-parallel Systems 175
 4.2.6 Universal Generating Function of Systems with Bridge Structure .. 178
4.3 Importance and Sensitivity Analysis Using Universal Generating Function..183
4.4 Estimating Boundary Points for Continuous-state System Reliability Measures ..188
 4.4.1 Discrete Approximation ...189
 4.4.2 Boundary Point Estimation ..193
References..198

5 Combined Universal Generating Function and Stochastic Process Method ...201
 5.1 Method Description ...202
 5.1.1 Performance Stochastic Process for Multi-state Element202
 5.1.2 Multi-state System Reliability Evaluation207
 5.2 Redundancy Analysis for Multi-state Systems214
 5.2.1 Introduction ..214
 5.2.2 Problem Formulation ..216
 5.2.3 Model Description ...218
 5.2.4 Algorithm for Universal Generating Function Computation for Entire Multi-state System ...226
 5.2.5 Reliability Measures Computation for Entire Multi-state System ..228
 5.3 Case Studies ...228
References..234

6 Reliability-associated Cost Assessment and Management Decisions for Multi-state Systems ..237
 6.1 Basic Life Cycle Cost Concept ..238
 6.2 Reliability-associated Cost and Practical Cost-reliability Analysis242
 6.2.1 Case Study 1: Air Conditioning System ..243
 6.2.2 Case Study 2: Feed Water Pumps for Power Generating Unit257
 6.3 Practical Cost-reliability Optimization Problems for Multi-state Systems ..265
 6.3.1 Multi-state System Structure Optimization265
 6.3.2 Single-stage Expansion of Multi-state Systems270
References..272

7 Aging Multi-state Systems ..273
 7.1 Markov Model and Markov Reward Model for Increasing Failure Rate Function ..273
 7.1.1 Case Study: Multi-state Power Generating Unit273
 7.2 Numerical Methods for Reliability Computation for Aging Multi-state System ..281
 7.2.1 Bound Approximation of Increasing Failure Rate Function283
 7.2.2 Availability Bounds for Increasing Failure Rate Function285
7.2.3 Total Expected Reward Bounds for Increasing Failure Rate Function ... 287

7.3 Reliability-associated Cost Assessment for Aging Multi-state System ... 291
 7.3.1 Case Study: Maintenance Investigation for Aging Air Conditioning System ... 293

7.4 Optimal Corrective Maintenance Contract Planning for Aging Multi-state System ... 299
 7.4.1 Algorithm for Availability and Total Expected Cost Bound Estimation .. 301
 7.4.2 Optimization Technique Using Genetic Algorithms .. 302
 7.4.3 Case Study: Optimal Corrective Maintenance Contract for Aging Air Conditioning System 303

7.5 Optimal Preventive Replacement Policy for Aging Multi-state Systems ... 310
 7.5.1 Problem Formulation .. 311
 7.5.2 Implementing the Genetic Algorithm .. 313
 7.5.3 Case Study: Optimal Preventive Maintenance for Aging Water Desalination System 315

References ... 318

8 Fuzzy Multi-state System: General Definition and Reliability Assessment ... 321
 8.1 Introduction .. 321
 8.2 Key Definitions and Concepts of a Fuzzy Multi-state System .. 323
 8.3 Reliability Evaluation of Fuzzy Multi-state Systems .. 336
 8.3.1 Fuzzy Universal Generating Functions: Definitions and Properties .. 336
 8.3.2 Availability Assessment for Fuzzy Multi-state Systems .. 337
 8.3.3 Fuzzy Universal Generating Function for Series-parallel Fuzzy Multi-state Systems 338
 8.3.4 Illustrative Examples .. 343

References ... 346

Appendix A Heuristic Algorithms as a General Optimization Technique ... 347
 A.1 Introduction .. 347
 A.2 Parameter Determination Problems .. 355
 A.3 Partition and Allocation Problems .. 356
 A.4 Mixed Partition and Parameter Determination Problems .. 359
 A.5 Sequencing Problems .. 360
 A.6 Determination of Solution Fitness .. 362
 A.7 Basic Genetic Algorithm Procedures and Reliability Application .. 364

References ... 365
Appendix B Parameter Estimation and Hypothesis Testing for Non-homogeneous Poisson Process ... 367
 B.1 Homogeneous Poisson Process .. 367
 B.2 Non-homogeneous Poisson Process ... 368
 B.2.1 General Description of Non-homogeneous Poisson Process 368
 B.2.2 Hypothesis Testing ... 370
 B.2.3 Computer-intensive Procedure for Testing the Non-homogeneous
 Poisson Process Hypothesis .. 372
References .. 375

Appendix C MATLAB® Codes for Examples and Case Study
Calculation .. 377
 C.1 Using MATLAB® ODE Solvers .. 377
 C.2 MATLAB® Code for Example 2.2 ... 377
 C.3 MATLAB® Code for Example 2.3 ... 378
 C.4 MATLAB® Code for Example 2.4 ... 379
 C.5 MATLAB® Code for Air Conditioning System (Case Study 6.2.1) 381
 C.5.1 Calculating Average Availability .. 381
 C.5.2 Calculating Total Number of System Failures 383
 C.5.3 Calculating Mean Time to System Failure 384
 C.5.4 Calculating Probability of Failure-free Operation 386
 C.6 MATLAB® Code for Multi-state Power Generation Unit
 (Case Study 7.1.1) ... 387
 C.6.1 Calculating Average Availability .. 387
 C.6.2 Calculating Total Number of System Failures 388
 C.6.3 Calculating Reliability Function .. 388
References .. 389

Index ... 391
Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers
Lisnianski, A.; Frenkel, I.; Ding, Y.
2010, XV, 393 p., Hardcover
ISBN: 978-1-84996-319-0