Contents

1 **Finite Element Analysis of Space Frame Structures** 1
 1.1 Introduction .. 1
 1.2 Formulation of a 3D Timoshenko Beam Element 2
 1.2.1 Curvatures of 3D Beams Under Pure Bending 3
 1.2.2 Equilibrium Equations of 3D Beam Elements 5
 1.2.3 Contributions of Transverse Shear Forces on the Elastic Curve 7
 1.2.4 Deformation of a Point on a Cross-Section of 3D Beams 9
 1.2.5 Rotation Matrix of a Point on a Cross-Section of 3D Beams and Deformation for Small Rotations ... 10
 1.2.6 Strains and Stresses at a Location on a Cross-Section of a 3D Beam 13
 1.2.7 Calculation of Forces and Moments of 3D Beams 14
 1.2.8 Differential Equations of the 3D Beam Element 16
 1.2.9 Solution of Differential Equations of the Elastic Curve and Shape Functions of the 3D Beam Element 18
 1.2.10 Total Potential Energy, Stiffness Matrix, and Static Equilibrium Equation 23
 1.2.11 Total Kinetic Energy, Mass Matrix, Damping Matrix, and Dynamic Equilibrium Equation 30
 1.2.12 Coordinate Systems and Transformations 37
 1.2.13 Transformations of Element Stiffness Matrix, Consistent Load Vector, and Mass Matrix. 41
 1.3 Formulation of Member Releases and Partly Connected Members .. 43
 1.3.1 Representation of a Partly Connected Beam Element 44
1.3.2 Formulation of Stiffness Matrix, Consistent Load Vector, and Mass Matrix of a Spring-Beam Element .. 46
1.3.3 Calculation of the Connectivity Matrix 53
1.3.4 Member Releases in a Different Coordinate System 63
1.4 Formulation of Eccentrically Connected Members 65
1.5 An Interface Beam Element for the Soil–Structure Interaction and Deformation of Soil Under R-Wave Propagation 69
1.5.1 Modeling of Soil Medium and Calculation of Interface Loadings .. 71
1.5.2 Formulation of Interface Element for Soil–Beam Interactions .. 75
1.5.3 Ground Deformation Under R-Wave Propagation and Calculation of the Exerted Force Vector 79
1.6 Calculation of Natural Frequencies and Mode Shapes, Eigenvalue Solution .. 87
1.6.1 Eigenvalue Solution .. 89
1.6.2 Eigenvalue Solution of Deteriorated Structures 94
1.7 Dynamic Response Analysis ... 97
1.7.1 Time-Domain Solution ... 98
1.7.2 Frequency Domain Solution 105
1.8 Examples .. 111
1.8.1 Example of a Portal Frame ... 111
1.8.2 Example of 2D Offshore Jacket Structure 114
1.8.3 A Simple Beam for Exercise 115
References .. 115

2 Introduction to Random Vibration and Stochastic Analysis 121
2.1 Introduction ... 121
2.2 Probability, Random Variables, Stochastic Processes, Probability Distribution and Density Functions 122
2.2.1 Probability Measure .. 123
2.2.2 Random Variables .. 125
2.2.3 Stochastic Processes .. 126
2.2.4 Probability Distribution and Density Functions 127
2.3 Mean Values, Probability Moments, and Variances of Random Variables and Random Functions 134
2.3.1 Functions of Random Variables 136
2.3.2 Some Useful Probability Distributions 141
2.4 Random Processes, Ensemble Averages, Expected Values, Stationary and Ergodic Processes 147
2.4.1 Ensemble Averages and Expected Values 148
2.4.2 Stationary and Ergodic Processes 150
2.4.3 Differentiation of Stochastic Processes 153
2.5 Spectral Analysis of Stochastic Processes

2.5.1 Spectral Moments, Variances of Derived Processes, Spectral Bandwidth

2.5.2 Band-Limited, Narrow-Band and Broad-Band Processes

2.5.3 Crossing Analysis and Probability Distributions of Maxima

2.6 Input–Output Relations of Stochastic Processes, Transfer Functions

2.7 Examples

References

3 Water Wave Theories and Wave Loads

3.1 Introduction

3.2 Introduction to Wave Theories

3.2.1 Stokes Wave Theory

3.2.2 Other Wave Theories

3.3 Linear (Airy) Wave Theory

3.3.1 Formulation for Deep Water Condition

3.4 Stochastic Description of Ocean Waves and Short-Term Sea States

3.4.1 Transfer Functions of a Random Wave in Deep Water

3.4.2 Statistics and Spectral Functions of the Water Elevation in the Short Term

3.5 Wave–Current Interaction

3.6 Probabilistic Description of Sea States in the Long Term

3.7 Morison’s Equation and Wave Forces on Structural Members

3.7.1 Wave Forces on Large Structural Members

3.7.2 Wave Forces on Inclined Structural Members

3.7.3 Calculation of Consistent Wave Forces of Members

3.8 Linearization of the Morison’s Equation

3.9 Linearization of the Morison’s Equation Under Wave–Current and Wave–Structure Interactions

3.9.1 Calculation of Standard Deviation of the Relative Normal Water Velocity

3.10 Calculation of Consistent Current Forces of Members, Hydrodynamic Damping Ratio and Added Mass Matrices of Members

3.10.1 Calculation of Consistent Current Forces of Members

3.10.2 Calculation of Hydrodynamic Damping Ratio

3.10.3 Calculation of Added Mass Matrices of Members
4 Spectral Analysis of Offshore Structures Under Wave and Earthquake Loadings ... 253
 4.1 Introduction ... 253
 4.2 Dynamic Analysis of Structures in the Frequency Domain, the Transfer Function Approach ... 254
 4.3 Calculation of Response Transfer Functions of Offshore Structures ... 256
 4.3.1 Response Transfer Functions for Wave Loads ... 256
 4.3.2 Response Transfer Functions for Earthquake Loading ... 257
 4.4 Calculation of Response Spectra of Offshore Structures ... 262
 4.4.1 Response Spectra Under Stochastic Wave Loads ... 262
 4.4.2 Response Spectra Under Stochastic Earthquake Loading ... 263
 4.5 Calculation of Response Statistical Quantities ... 276
 4.6 Example ... 277
References ... 281

5 Fatigue Analysis of Offshore Structures ... 287
 5.1 Introduction ... 287
 5.2 Fatigue Phenomenon and Fatigue Damages ... 288
 5.2.1 Fracture Mechanics Approach to Predict Fatigue Damages ... 289
 5.2.2 S–N Curve Approach to Predict Fatigue Damages ... 293
 5.2.3 Cumulative Fatigue Damage Rule ... 294
 5.3 Cycle Counting Procedure for Random Stresses ... 295
 5.3.1 Rainflow Cycle Counting ... 296
 5.4 Probability Distribution of Random Stress Ranges ... 298
 5.4.1 Parameters of the Probability Distribution of Stress Ranges ... 300
 5.5 Spectral Fatigue Damages Based on Multilinear (S–N) Model ... 305
 5.6 Examples ... 308
References ... 312

6 Reliability Analysis of Offshore Structures ... 315
 6.1 Introduction ... 315
6.2 Structural Reliability Methods ... 316
 6.2.1 Design Variables, Limit State Functions, and Failure Probability in the Reliability Analysis 318
 6.2.2 First-Order Reliability Methods 321
 6.2.3 Second-Order Reliability Method 330
 6.2.4 Level-III (Exact) Reliability Methods 335
6.3 Inverse Reliability Method ... 338
6.4 Uncertainties in Spectral Stresses and Fatigue Damages of Offshore Structures 341
 6.4.1 Uncertainties in Stress Statistical Characteristics 342
 6.4.2 Uncertainties in Fatigue Model Parameters 348
6.5 Stress Spectrum and Stress Statistical Values in the Uncertainty Space .. 349
6.6 Fatigue and Stress Based Reliability Calculations of Offshore Structures 353
6.7 Examples ... 354
 6.7.1 Reliability Calculation of a Tubular Steel Member 354
 6.7.2 Fatigue Reliability Calculation of an Example Offshore Jacket Structure 358
References .. 361

7 Optimization of Offshore Structures .. 365
 7.1 Introduction ... 365
 7.2 Structural Optimization .. 366
 7.2.1 Objective Function ... 367
 7.2.2 Design Constraints .. 368
 7.2.3 Design Example .. 369
 7.3 Deterministic and Stochastic Solution Techniques of Optimization .. 372
 7.3.1 Sequential Quadratic Programming 373
 7.3.2 Differential Evolution Technique 374
 7.4 Mathematical Formulation of the Reliability-Based Design Optimization 376
 7.4.1 Reliability Index Approach for the RBDO 378
 7.4.2 Performance Measure Approach for the RBDO 379
 7.5 Sensitivity Analysis of RBDO of Offshore Structures .. 380
 7.5.1 Finite Difference Method 381
 7.5.2 Direct Differentiation Method 382
 7.5.3 Adjoint Method .. 382
 7.6 Examples ... 384
 7.6.1 Deterministic Design Optimization 384
 7.6.2 Reliability-Based Design Optimization 391
 7.6.3 Exercises .. 404
References .. 405
Stochastic Analysis of Offshore Steel Structures
An Analytical Appraisal
Karadeniz, H.
2013, XIV, 410 p. With online files/update., Hardcover