Contents

Part I Evolutionary Algorithms

1 **Introduction** .. 3
1.1 What Are Evolutionary Algorithms Used For? 3
1.2 What Are Evolutionary Algorithms? 6
Suggestions for Further Reading 8
References ... 9

2 **Simple Evolutionary Algorithms** 11
2.1 Introductory Remarks ... 11
2.2 Simple Genetic Algorithm .. 14
 2.2.1 An Optimization Problem 14
 2.2.2 Representation and Evaluation 15
 2.2.3 Initialization ... 17
 2.2.4 Selection .. 18
 2.2.5 Variation Operators 20
 2.2.6 Simple Genetic Algorithm Infrastructure 22
2.3 Evolution Strategy and Evolutionary Programming 25
 2.3.1 Evolution Strategy 25
 2.3.2 Evolutionary Programming 27
2.4 Direction-based Search .. 28
 2.4.1 Deterministic Direction-based Search 28
 2.4.2 Random Direction-based Search 32
2.5 Summary ... 35
Suggestions for Further Reading 36
Exercises and Potential Research Projects 37
References ... 37

3 **Advanced Evolutionary Algorithms** 39
3.1 Problems We Face .. 39
3.2 Encoding and Operators .. 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Binary Code and Related Operators</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Real Code and Related Operators</td>
<td>45</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Other Topics on Code and Operators</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Selection Methods</td>
<td>64</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Dilemmas for Selection Methods</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Proportional Selection</td>
<td>67</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Fitness Scaling and Transferral</td>
<td>68</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Ranking</td>
<td>72</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Tournament Selection</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>Replacement and Stop Criteria</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Replacement</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Stop Criteria</td>
<td>80</td>
</tr>
<tr>
<td>3.5</td>
<td>Parameter Control</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Strategy Parameter Setting</td>
<td>82</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Examples of Variation Operator Control</td>
<td>86</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Examples of popsize Control</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>Performance Evaluation of Evolutionary Algorithms</td>
<td>101</td>
</tr>
<tr>
<td>3.6.1</td>
<td>General Discussion on Performance Evaluation</td>
<td>101</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Performance Evaluation and Comparison</td>
<td>105</td>
</tr>
<tr>
<td>3.7</td>
<td>Brief Introduction to Other Topics</td>
<td>116</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Coevolution</td>
<td>116</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Memetic Algorithms</td>
<td>117</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Hyper-heuristics</td>
<td>119</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Handling Uncertain Environments</td>
<td>121</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Suggestions for Further Reading</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Exercises and Potential Research Projects</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>127</td>
</tr>
</tbody>
</table>

Part II Dealing with Complicated Problems

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Constrained Optimization</td>
<td>135</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Constrained Optimization</td>
<td>135</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Constrained Optimization Evolutionary Algorithms</td>
<td>137</td>
</tr>
<tr>
<td>4.2</td>
<td>Feasibility Maintenance</td>
<td>138</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Genetic Algorithm for Numerical Optimization of</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Constrained Problems</td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Homomorphous Mappings</td>
<td>140</td>
</tr>
<tr>
<td>4.3</td>
<td>Penalty Function</td>
<td>143</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Static Penalty Function</td>
<td>144</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Dynamic Penalty Function</td>
<td>145</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Adaptive Penalty Function</td>
<td>145</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Self-adaptive Penalty Function</td>
<td>150</td>
</tr>
<tr>
<td>4.4</td>
<td>Separation of Constraint Violation and Objective Value</td>
<td>150</td>
</tr>
</tbody>
</table>
Contents

4.4.1 Constrained Optimization Evolutionary Algorithms Based on Rank .. 151
4.4.2 Simple Multimembered Evolution Strategy 155
4.4.3 α Constrained Method 156

4.5 Performance Evaluation of Constrained Optimization Evolutionary Algorithms .. 159
4.5.1 Benchmark Problems 159
4.5.2 Performance Indices 160

4.6 Summary .. 160

Suggestions for Further Reading .. 161
Exercises and Potential Research Projects 162
References .. 163

**5 Multimodal Optimization ... 165
5.1 Problems We Face .. 165
5.1.1 Multimodal Problems 165
5.1.2 Niche, Species, and Speciation 167

5.2 Sequential Niche ... 169

5.3 Fitness Sharing .. 171
5.3.1 Standard Fitness Sharing 171
5.3.2 Clearing Procedure 173
5.3.3 Clustering for Speciation 174
5.3.4 Dynamic Niche Sharing 175
5.3.5 Coevolutionary Shared Niching 179

5.4 Crowding .. 180
5.4.1 Deterministic Crowding 180
5.4.2 Restricted Tournament Selection 181
5.4.3 Species Conserving Genetic Algorithm 182

5.5 Performance Indices for Multimodal Optimization 183

5.6 Application Example 185

5.7 Summary .. 187

Suggestions for Further Reading .. 188
Exercises and Potential Research Projects 189
References .. 190

**6 Multiobjective Optimization 193
6.1 Introduction ... 193
6.1.1 Problems We Face 193
6.1.2 Terminologies ... 194
6.1.3 Why Are Evolutionary Algorithms Good at Multiobjective Optimization Problems? 196

6.2 Preference-based Approaches 198
6.2.1 Weight Sum Method 198
6.2.2 Compromise Method 200
6.2.3 Goal Programming Method 201
6.3 Vector-evaluated Genetic Algorithm .. 202
6.4 Considerations for Designing Multiobjective Evolutionary Algorithms ... 203
 6.4.1 Quality .. 204
 6.4.2 Distribution .. 206
6.5 Classical Multiobjective Evolutionary Algorithms 209
 6.5.1 Nondominated Sorting Genetic Algorithm II 209
 6.5.2 Strength Pareto Evolutionary Algorithm 2 and Pareto Envelope-based Selection Algorithm 211
 6.5.3 Pareto Archived Evolution Strategy 215
 6.5.4 Micro-GA for Multiobjective Optimization 216
6.6 Cutting Edges of Multiobjective Evolutionary Algorithms 217
 6.6.1 Expanding Single-objective Evolutionary Algorithms into Multiobjective Optimization Problems 217
 6.6.2 Archive Maintenance .. 221
 6.6.3 Rebirth from the Ashes 228
6.7 Performance Evaluation of Multiobjective Evolutionary Algorithms 234
 6.7.1 Benchmark Problems 234
 6.7.2 Performance Indices 236
6.8 Objectives vs. Constraints .. 247
 6.8.1 Handling Constraints in Multiobjective Optimization Problems .. 247
 6.8.2 Multiobjective Evolutionary Algorithms for Constraint Handling .. 248
6.9 Application Example .. 253
6.10 Summary .. 256
Suggestions for Further Reading ... 258
Exercises and Potential Research Projects 258
References ... 259

7 Combinatorial Optimization ... 263
 7.1 Introduction .. 263
 7.1.1 Combinatorial Optimization 263
 7.1.2 NP-complete and NP-hard Problems 266
 7.1.3 Evolutionary Algorithms for Combinatorial Optimization .. 267
 7.2 Knapsack Problem .. 270
 7.2.1 Problem Description .. 270
 7.2.2 Evolutionary Algorithms for Knapsack Problem 271
 7.3 Traveling Salesman Problem 276
 7.3.1 Problem Description .. 276
 7.3.2 Heuristic Methods for Traveling Salesman Problem .. 278
 7.3.3 Evolutionary Algorithm Code Schemes for Traveling Salesman Problem .. 281
 7.3.4 Variation Operators for Permutation Code 285
 7.4 Job-shop Scheduling Problem 299
Part III Brief Introduction to Other Evolutionary Algorithms

8 Swarm Intelligence .. 327
 8.1 Introduction .. 327
 8.2 Ant Colony Optimization .. 329
 8.2.1 Rationale Behind Ant Colony Optimization 329
 8.2.2 Discrete Ant Colony Optimization 330
 8.2.3 Continuous Ant Colony Optimization 336
 8.3 Particle Swarm Optimization 339
 8.3.1 Organic Particle Swarm Optimization 340
 8.3.2 Neighbor Structure and Related Extensions 342
 8.3.3 Extensions from Organic Particle Swarm Optimization 347
 8.4 Summary ... 348
 Suggestions for Further Reading .. 349
 Exercises and Potential Research Projects 350
 References .. 351

9 Artificial Immune Systems .. 355
 9.1 Introduction .. 355
 9.2 Artificial Immune System Based on Clonal Selection 357
 9.2.1 Clonal Selection .. 357
 9.2.2 Clonal Selection Algorithm 359
 9.2.3 Artificial Immune System for Multiobjective Optimization Problems .. 361
 9.3 Artificial Immune System Based on Immune Network 364
 9.3.1 Immune Network Theory .. 364
 9.3.2 Continuous Immune Network 366
 9.3.3 Discrete Immune Network 368
 9.4 Artificial Immune System Based on Negative Selection 370
 9.4.1 File Protection by Negative Selection 371
 9.4.2 Intrusion Detection by Negative Selection 373
 9.5 Summary ... 375
 Suggestions for Further Reading .. 376
 Exercises and Potential Research Projects 377
 References .. 377
10 Genetic Programming .. 381
 10.1 Introduction to Genetic Programming 381
 10.1.1 The Difference Between Genetic Programming and
 Genetic Algorithms 381
 10.1.2 Genetic Programming for Curve Fitting 382
 10.2 Other Code Methods for Genetic Programming 390
 10.2.1 Gene Expression Programming 390
 10.2.2 Grammatical Evolution for Solving Differential Equations .. 392
 10.3 Example of Genetic Programming for Knowledge Discovery .. 395
 10.4 Summary ... 397
Suggestions for Further Reading 398
Exercises and Potential Research Projects 399
References .. 400

A Benchmark Problems .. 403
References .. 409

Index ... 411
Introduction to Evolutionary Algorithms
Yu, X.; Gen, M.
2010, XVI, 422 p. 168 illus., Hardcover
ISBN: 978-1-84996-128-8