Contents

1 Introduction .. 1
 1.1 Basic Notions, Background 1
 1.2 A Short History 3
 1.3 Control Systems for Vehicles and Robots, Research Motivation . 5
 1.4 Outline of the Following Chapters 7

2 Basic Nonlinear Control Methods 11
 2.1 Nonlinear System Classes 11
 2.1.1 State Equation of Nonlinear Systems 12
 2.1.2 Holonomic and Nonholonomic Systems 15
 2.1.3 Differentially Flat Systems 24
 2.2 Dynamic Model of Simple Systems 30
 2.2.1 Dynamic Model of Inverted Pendulum 30
 2.2.2 Car Active Suspension Model 33
 2.2.3 The Model of the 2 DOF Robot Arm 35
 2.3 Stability of Nonlinear Systems 38
 2.3.1 Stability Definitions 39
 2.3.2 Lyapunov Stability Theorems 40
 2.3.3 Barbalat Lemmas 47
 2.3.4 Stability of Interconnected Passive Systems 49
 2.4 Input–Output Linearization 54
 2.5 Flatness Control 57
 2.6 Backstepping .. 60
 2.7 Sliding Control 64
 2.7.1 Sliding Control of Second Order Systems 65
 2.7.2 Control Chattering 67
 2.7.3 Sliding Control of Robot 70
 2.8 Receding Horizon Control 71
 2.8.1 Nonlinear Receding Horizon Control 72
 2.8.2 Nonlinear RHC Control of 2D Crane 74
 2.8.3 RHC Based on Linearization at Each Horizon 76
 2.9 Closing Remarks 76
3 Dynamic Models of Ground, Aerial and Marine Robots

3.1 Dynamic Model of Rigid Body

3.1.1 Dynamic Model Based on Newton–Euler Equations
3.1.2 Kinematic Model Using Euler (RPY) Angles
3.1.3 Kinematic Model Using Quaternion

3.2 Dynamic Model of Industrial Robot

3.2.1 Recursive Computation of the Kinematic Quantities
3.2.2 Robot Dynamic Model Based on Appell’s Equation
3.2.3 Robot Dynamic Model Based on Lagrange’s Equation
3.2.4 Dynamic Model of SCARA Robot

3.3 Dynamic Model of Car

3.3.1 Nonlinear Model of Car
3.3.2 Input Affine Approximation of the Dynamic Model
3.3.3 Linearized Model for Constant Velocity

3.4 Dynamic Model of Airplane

3.4.1 Coordinate Systems for Navigation
3.4.2 Airplane Kinematics
3.4.3 Airplane Dynamics
3.4.4 Wind-Axes Coordinate System
3.4.5 Gravity Effect
3.4.6 Aerodynamic Forces and Torques
3.4.7 Gyroscopic Effect of Rotary Engine
3.4.8 State Equations of Airplane
3.4.9 Linearization of the Nonlinear Airplane Model
3.4.10 Parametrization of Aerodynamic and Trust Forces and Moments

3.5 Dynamic Model of Surface and Underwater Ships

3.5.1 Rigid Body Equation of Ship
3.5.2 Hydrodynamic Forces and Moments
3.5.3 Restoring Forces and Moments
3.5.4 Ballast Systems
3.5.5 Wind, Wave and Current Models
3.5.6 Kinematic Model
3.5.7 Dynamic Model in Body Frame
3.5.8 Dynamic Model in NED Frame

3.6 Closing Remarks

4 Nonlinear Control of Industrial Robots

4.1 Decentralized Three-Loop Cascade Control

4.1.1 Dynamic Model of DC Motor
4.1.2 Design of Three-Loop Cascade Controller
4.1.3 Approximation of Load Inertia and Disturbance Torque

4.2 Computed Torque Technique

4.3 Nonlinear Decoupling in Cartesian Space

4.3.1 Computation of Equivalent Forces and Torques
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2</td>
<td>Computation of Equivalent Joint Torques</td>
<td>147</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Robot Dynamic Model in Cartesian Space</td>
<td>147</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Nonlinear Decoupling of the Free Motion</td>
<td>148</td>
</tr>
<tr>
<td>4.4</td>
<td>Hybrid Position and Force Control</td>
<td>149</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Generalized Task Specification Matrices</td>
<td>150</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Hybrid Position/Force Control Law</td>
<td>151</td>
</tr>
<tr>
<td>4.5</td>
<td>Self-Tuning Adaptive Control</td>
<td>152</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Independent Parameters of Robot Dynamic Model</td>
<td>152</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Control and Adaptation Laws</td>
<td>154</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Simulation Results for 2-DOF Robot</td>
<td>156</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Identification Strategy</td>
<td>156</td>
</tr>
<tr>
<td>4.6</td>
<td>Robust Backstepping Control in Case of Nonsmooth Path</td>
<td>158</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Gradient Update Laws for Speed Error</td>
<td>159</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Control of 2-DOF Robot Arm Along Rectangle Path</td>
<td>160</td>
</tr>
<tr>
<td>4.7</td>
<td>Closing Remarks</td>
<td>166</td>
</tr>
<tr>
<td>5</td>
<td>Nonlinear Control of Cars</td>
<td>169</td>
</tr>
<tr>
<td>5.1</td>
<td>Control Concept of Collision Avoidance System (CAS)</td>
<td>169</td>
</tr>
<tr>
<td>5.2</td>
<td>Path Design Using Elastic Band</td>
<td>170</td>
</tr>
<tr>
<td>5.3</td>
<td>Reference Signal Design for Control</td>
<td>172</td>
</tr>
<tr>
<td>5.4</td>
<td>Nonlinear Dynamic Model</td>
<td>174</td>
</tr>
<tr>
<td>5.5</td>
<td>Differential Geometry Based Control Algorithm</td>
<td>175</td>
</tr>
<tr>
<td>5.5.1</td>
<td>External State Feedback Design</td>
<td>176</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Stability Proof of Zero Dynamics</td>
<td>178</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Simulation Results Using DGA Method</td>
<td>181</td>
</tr>
<tr>
<td>5.6</td>
<td>Receding Horizon Control</td>
<td>182</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Nominal Values and Perturbations</td>
<td>184</td>
</tr>
<tr>
<td>5.6.2</td>
<td>RHC Optimization Using End Constraint</td>
<td>186</td>
</tr>
<tr>
<td>5.7</td>
<td>State Estimation Using GPS and IMU</td>
<td>189</td>
</tr>
<tr>
<td>5.8</td>
<td>Simulation Results with RHC Control and State Estimation</td>
<td>192</td>
</tr>
<tr>
<td>5.9</td>
<td>Software Implementations</td>
<td>192</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Standalone Programs</td>
<td>193</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Quick Prototype Design for Target Processors</td>
<td>195</td>
</tr>
<tr>
<td>5.10</td>
<td>Closing Remarks</td>
<td>195</td>
</tr>
<tr>
<td>6</td>
<td>Nonlinear Control of Airplanes and Helicopters</td>
<td>199</td>
</tr>
<tr>
<td>6.1</td>
<td>Receding Horizon Control of the Longitudinal Motion of an Airplane</td>
<td>199</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Robust Internal Stabilization Using Disturbance Observer</td>
<td>201</td>
</tr>
<tr>
<td>6.1.2</td>
<td>High Level Receding Horizon Control</td>
<td>203</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Simulation Results with External RHC and Internal Disturbance Observer</td>
<td>208</td>
</tr>
<tr>
<td>6.2</td>
<td>Backstepping Control of an Indoor Quadrotor Helicopter</td>
<td>213</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Dynamic Model of the Quadrotor Helicopter</td>
<td>215</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Sensor System of the Helicopter</td>
<td>217</td>
</tr>
</tbody>
</table>
9.4.1 Parameter Equivalence with the Tustin Model 312
9.4.2 Modeling Errors 313
9.4.3 Incorporating the Dynamic Effects 313
9.5 Backlash in Mechanical Systems 314
9.6 Closing Remarks 317

10 Mechanical Control Systems with Nonsmooth Nonlinearities 319
10.1 Switched System Model of Mechanical Systems with Stribeck Friction and Backlash 319
10.2 Motion Control ... 321
10.2.1 Stabilizing Control 322
10.2.2 Extension of the Control Law for Tracking 326
10.2.3 Simulation Results 327
10.3 Friction and Backlash Induced Limit Cycle Around Zero Velocity 330
10.3.1 Chaotic Measures for Nonlinear Analysis 333
10.3.2 Simulation Measurements 334
10.4 Friction Generated Limit Cycle Around Stribeck Velocities 336
10.4.1 Simulation Results 339
10.4.2 Experimental Measurements 339
10.5 Closing Remarks 341

11 Model Based Identification and Adaptive Compensation of Nonsmooth Nonlinearities .. 343
11.1 Friction and Backlash Measurement and Identification in Robotic Manipulators .. 343
11.1.1 Friction Measurement and Identification 345
11.1.2 Backlash Measurement 346
11.1.3 Velocity Control for Measurements 347
11.1.4 Experimental Measurements 349
11.2 Friction Measurement and Identification in Hydraulic Actuators 355
11.2.1 Mathematical Model of Hydraulic Actuators 356
11.2.2 Friction Measurement and Identification 358
11.2.3 Experimental Measurements 359
11.3 Nonlinear Control of a Ball and Beam System Using Coulomb Friction Compensation 363
11.3.1 Adaptive Friction Identification 366
11.3.2 Nonlinear Control Algorithm for the Ball and Beam System .. 367
11.3.3 Experimental Evaluations 368
11.4 Adaptive Payload and Friction Compensation in Robotic Manipulators .. 371
11.4.1 Simulation Results—Adaptive Friction Compensation in the Presence of Backlash 377
11.4.2 Experimental Measurements 379
11.5 Closing Remarks 382
12 Conclusions and Future Research Directions 385
 12.1 Summary .. 385
 12.2 Future Research Directions 387

Appendix A Kinematic and Dynamic Foundations of Physical Systems 389
 A.1 Orientation Description Using Rotations and Quaternion 389
 A.1.1 Homogeneous Transformations 389
 A.1.2 Orientation Description Using Rotations 391
 A.1.3 Orientation Description Using Quaternion 393
 A.1.4 Solution of the Inverse Orientation Problem 394
 A.2 Differentiation Rule in Moving Coordinate System 396
 A.3 Inertia Parameters of Rigid Objects 398
 A.4 Lagrange, Appell and Newton–Euler Equations 400
 A.4.1 Lagrange Equation 402
 A.4.2 Appell Equation 403
 A.4.3 Newton–Euler Equations 404
 A.5 Robot Kinematics .. 406
 A.5.1 Denavit-Hartenberg Form 406
 A.5.2 Direct Kinematic Problem 408
 A.5.3 Inverse Kinematic Problem 410
 A.5.4 Robot Jacobian 411

Appendix B Basis of Differential Geometry for Control Problems 417
 B.1 Lie Derivatives, Submanifold, Tangent Space 417
 B.2 Frobenius Theorem .. 422
 B.3 Local Reachability and Observability 428
 B.4 Input/Output Linearization, Zero Dynamics 439

References ... 447

Index ... 455
Nonlinear Control of Vehicles and Robots
Lantos, B.; Márton, L.
2011, XXVIII, 464 p., Hardcover
ISBN: 978-1-84996-121-9