Contents

Part I Geometric Algebra

New Tools for Computational Geometry and Rejuvenation of Screw Theory 3
David Hestenes
1 Introduction .. 3
2 Universal Geometric Algebra 4
3 Group Theory with Geometric Algebra 6
4 Euclidean Geometry with Conformal GA 8
5 Invariant Euclidean Geometry 10
6 Projective Geometry 13
7 Covariant Euclidean Geometry with Conformal Splits 14
8 Rigid Displacements 18
9 Framing a Rigid Body 20
10 Rigid Body Kinematics 22
11 Rigid Body Dynamics 24
12 Screw Theory 26
13 Conformal Split and Matrix Representation 28
14 Linked Rigid Bodies & Robotics 31
References ... 33

Tutorial: Structure-Preserving Representation of Euclidean Motions Through Conformal Geometric Algebra .. 35
Leo Dorst
1 Introduction ... 36
2 Conformal Geometric Algebra 36
2.1 Trick 1: Representing Euclidean Points in Minkowski Space 36
2.2 Trick 2: Orthogonal Transformations as Multiple Reflections in a Sandwiching Representation 39
2.3 Trick 3: Constructing Elements by Anti-Symmetry 42
2.4 Trick 4: Dual Specification of Elements Permits Intersection 43
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Bonus: The Elements of Euclidean Geometry as Blades</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bonus: Euclidean Motions Through Sandwiching</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bonus: Structure Preservation and the Transfer Principle</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Trick 5: Exponential Representation of Versors</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Trick 6: Sparse Implementation at Compiler Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Graphics in Geometric Algebra</td>
<td>Alyn Rockwood and Dietmar Hildenbrand</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Benefits of Geometric Algebra for Computational Engineering</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Unification of Mathematical Systems</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Uniform Handling of Different Geometric Primitives</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Simplified Rigid Body Motion</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Curl, Vorticity and Rotation</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>More Efficient Implementations</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Some Applications</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>The Geometric Primitives in More Detail</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Planes as a Limit of Spheres</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Distances Based on the Inner Product</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Approximation of Points with the Help of Planes or Spheres</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Computational Efficiency of Geometric Algebra using Gaalop</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parameterization of 3D Conformal Transformations in Conformal</td>
<td>Hongbo Li</td>
</tr>
<tr>
<td>1</td>
<td>Terminology and Notations</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Exponential Map and Exterior Exponential Map</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Twisted Vahlen Matrices and Quaternionic Vahlen Matrices</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cayley Transform</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part II Clifford Fourier Transform</td>
<td>Mawardi Bahri, Eckhard M.S. Hitzer, and Sriwulan Adji</td>
</tr>
<tr>
<td>1</td>
<td>Two-Dimensional Clifford Windowed Fourier Transform</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Real Clifford Algebra \mathbb{R}^2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Clifford Fourier Transform (CFT)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2D Clifford Windowed Fourier Transform</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Definition of the CWFT</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Properties of the CWFT</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Examples of the CWFT</td>
<td></td>
</tr>
</tbody>
</table>
Contents

5 Comparison of CFT and CWFT 105
6 Conclusion ... 105
References .. 106

The Cylindrical Fourier Transform .. 107
Fred Brackx, Nele De Schepper, and Frank Sommen
1 Introduction .. 107
2 The Clifford Analysis Toolkit 108
3 The Clifford–Fourier Transform 110
4 The Cylindrical Fourier Transform 111
 4.1 Definition .. 111
 4.2 Properties .. 112
 4.3 Spectrum of the L^2-Basis Consisting of Generalized
 Clifford–Hermite Functions 114
5 Application Potential of the Cylindrical Fourier Transform 117
6 Conclusion ... 118
References .. 119

Analyzing Real Vector Fields with Clifford Convolution and
Clifford–Fourier Transform ... 121
Wieland Reich and Gerik Scheuermann
1 Fluid Flow Analysis ... 121
2 Geometric Algebra ... 122
3 Clifford Convolution .. 124
4 Clifford–Fourier Transform 124
5 Relation to Other Fourier Transforms 126
 5.1 \mathbb{H}-Holomorphic Functions and Fourier Series 128
 5.2 Biquaternion Fourier Transform 130
 5.3 Two-Sided Quaternion Fourier Transform 132
6 Conclusion ... 132
References .. 133

Clifford–Fourier Transform for Color Image Processing 135
Thomas Batard, Michel Berthier, and Christophe Saint-Jean
1 Introduction .. 135
2 Fourier Transform and Group Actions 136
3 Clifford–Fourier Transform in $L^2(\mathbb{R}^2, (\mathbb{R}^n, Q))$ 138
 3.1 The Cases $n = 3, 4$: Group Morphisms from \mathbb{R}^2 to $\text{Spin}(4)$ 139
 3.2 The Cases $n = 3, 4$: The Clifford–Fourier Transform 143
4 Application to Color Image Filtering 145
 4.1 Clifford–Fourier Transform of Color Images 145
 4.2 Color Image Filtering 147
5 Related Works .. 151
 5.1 The Hypercomplex Fourier Transform of Sangwine et al. 152
 5.2 The Quaternionic Fourier Transform of Bülow 153
6 Conclusion ... 155
Hilbert Transforms in Clifford Analysis

Fred Brackx, Bram De Knock, and Hennie De Schepper

1 Introduction: The Hilbert Transform on the Real Line
2 Hilbert Transforms in Euclidean Space
 2.1 Definition and Properties
 2.2 Analytic Signals
 2.3 Monogenic Extensions of Analytic Signals
 2.4 Example 1
 2.5 Example 2
3 Generalized Hilbert Transforms in Euclidean Space
 3.1 First generalization
 3.2 Second Generalization
4 The Anisotropic Hilbert Transform
 4.1 Definition of the Anisotropic Hilbert Transform
 4.2 Properties of the Anisotropic Hilbert Transform
 4.3 Example
5 Conclusion

References

Part III Image Processing, Wavelets and Neurocomputing

Geometric Neural Computing for 2D Contour and 3D Surface Reconstruction

Jorge Rivera-Rovelo, Eduardo Bayro-Corrochano, and Ruediger Dillmann

1 Introduction
2 Geometric Algebra
 2.1 The OPNS and IPNS
 2.2 Conformal Geometric Algebra
 2.3 Rigid Body Motion
3 Determining the Shape of an Object
 3.1 Automatic Samples Selection Using GGVF
 3.2 Learning the Shape Using Versors
4 Experiments
5 Conclusion

References

Geometric Associative Memories and Their Applications to Pattern Classification

Benjamin Cruz, Ricardo Barron, and Humberto Sossa

1 Introduction
 1.1 Classic Associative Memory Models
<table>
<thead>
<tr>
<th>Contents</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Basics of Conformal Geometric Algebra</td>
<td>213</td>
</tr>
<tr>
<td>3 Geometric Algebra Classification Models</td>
<td>215</td>
</tr>
<tr>
<td>4 Geometric Associative Memories</td>
<td>216</td>
</tr>
<tr>
<td>4.1 Creating Spheres</td>
<td>216</td>
</tr>
<tr>
<td>4.2 Pattern Learning and Classification</td>
<td>221</td>
</tr>
<tr>
<td>4.3 Conditions for Perfect Classification</td>
<td>222</td>
</tr>
<tr>
<td>4.4 Conditions for Robust Classification</td>
<td>222</td>
</tr>
<tr>
<td>5 Numerical Examples</td>
<td>223</td>
</tr>
<tr>
<td>6 Real Examples</td>
<td>227</td>
</tr>
<tr>
<td>7 Conclusions and Future Work</td>
<td>228</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
</tbody>
</table>

Classification and Clustering of Spatial Patterns with Geometric Algebra 231
Minh Tuan Pham, Kanta Tachibana, Eckhard M.S. Hiter,
Tomohiro Yoshikawa, and Takeshi Furuhashi

1 Introduction 231
2 Method 232
2.1 Feature Extraction for Geometric Data 233
2.2 Distribution Learning and Its Mixture for Classification 235
2.3 GA Kernel and Alignment and Semi-Supervised Learning for Clustering 237
3 Experimental Results and Discussion 239
3.1 Classification of Handwritten Digits 240
3.2 Kernel Alignment and Web Questionnaire Analysis Results 242
4 Conclusions 244
References 246

QWT: Retrospective and New Applications 249
Yi Xu, Xiaokang Yang, Li Song, Leonardo Traversoni, and Wei Lu

1 Introduction 249
2 Evolution of Qwt and Principles of Quaternion Wavelet Construction 251
2.1 Evolution of QWT 251
2.2 Principles of Quaternion Wavelet Construction 254
3 The Mechanism of Adaptive Scale Representation in QWT 257
4 The Potential Use of QWT in Image Registration 261
5 The Potential Use of QWT in Image Fusion 265
6 The Potential Use of QWT in Color Image Recognition 268
7 Conclusion 272
References 272
Part IV Computer Vision

Image Sensor Model Using Geometric Algebra: From Calibration to Motion Estimation

Thibaud Debaecker, Ryad Benosman, and Sio H. Ieng

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Conformal Geometric Algebra</td>
</tr>
<tr>
<td>2.1</td>
<td>Geometric Algebras</td>
</tr>
<tr>
<td>2.2</td>
<td>Conformal Geometric Algebra (CGA)</td>
</tr>
<tr>
<td>3</td>
<td>General Model of a Cone-Pixels Camera</td>
</tr>
<tr>
<td>3.1</td>
<td>Geometric Settings</td>
</tr>
<tr>
<td>3.2</td>
<td>The General Model of a Central Cone-Pixel Camera</td>
</tr>
<tr>
<td>3.3</td>
<td>Intersection of Cones</td>
</tr>
<tr>
<td>4</td>
<td>General Cone-Pixel Camera Calibration</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental Protocol</td>
</tr>
<tr>
<td>4.2</td>
<td>Calibration Experimental Results</td>
</tr>
<tr>
<td>5</td>
<td>Motion Estimation</td>
</tr>
<tr>
<td>5.1</td>
<td>Problem Formulation</td>
</tr>
<tr>
<td>5.2</td>
<td>Cone Intersection Score Functions</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulation Experiments for Motion Estimation Using Cone Intersection Criterion</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion and Future Works</td>
</tr>
</tbody>
</table>

Model-Based Visual Self-localization Using Gaussian Spheres

David Gonzalez-Aguirre, Tamim Asfour, Eduardo Bayro-Corrochano, and Ruediger Dillmann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Outline of Visual Self-localization</td>
</tr>
<tr>
<td>2.1</td>
<td>Visual Acquisition of Landmarks</td>
</tr>
<tr>
<td>2.2</td>
<td>Data Association for Model Matching</td>
</tr>
<tr>
<td>2.3</td>
<td>Pose-Estimation Optimization</td>
</tr>
<tr>
<td>3</td>
<td>Uncertainty</td>
</tr>
<tr>
<td>3.1</td>
<td>Image-to-Space Uncertainty</td>
</tr>
<tr>
<td>3.2</td>
<td>Space-to-Ego Uncertainty</td>
</tr>
<tr>
<td>4</td>
<td>Geometry and Uncertainty Model</td>
</tr>
<tr>
<td>4.1</td>
<td>Gaussian Spheres</td>
</tr>
<tr>
<td>4.2</td>
<td>Radial Space</td>
</tr>
<tr>
<td>4.3</td>
<td>Restriction Lines</td>
</tr>
<tr>
<td>4.4</td>
<td>Restriction Hyperplanes</td>
</tr>
<tr>
<td>4.5</td>
<td>Duality and Uniqueness</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part IV</td>
<td>Computer Vision</td>
</tr>
</tbody>
</table>

Part IV Computer Vision

Image Sensor Model Using Geometric Algebra: From Calibration to Motion Estimation

Thibaud Debaecker, Ryad Benosman, and Sio H. Ieng

1. Introduction

2. Introduction to Conformal Geometric Algebra

 2.1 Geometric Algebras
 2.2 Conformal Geometric Algebra (CGA)

3. General Model of a Cone-Pixels Camera

 3.1 Geometric Settings
 3.2 The General Model of a Central Cone-Pixel Camera
 3.3 Intersection of Cones

4. General Cone-Pixel Camera Calibration

 4.1 Experimental Protocol
 4.2 Calibration Experimental Results

5. Motion Estimation

 5.1 Problem Formulation
 5.2 Cone Intersection Score Functions
 5.3 Simulation Experiments for Motion Estimation Using Cone Intersection Criterion

6. Conclusion and Future Works

References

Model-Based Visual Self-localization Using Gaussian Spheres

David Gonzalez-Aguirre, Tamim Asfour, Eduardo Bayro-Corrochano, and Ruediger Dillmann

1. Motivation

2. Outline of Visual Self-localization

 2.1 Visual Acquisition of Landmarks
 2.2 Data Association for Model Matching
 2.3 Pose-Estimation Optimization

3. Uncertainty

 3.1 Image-to-Space Uncertainty
 3.2 Space-to-Ego Uncertainty

4. Geometry and Uncertainty Model

 4.1 Gaussian Spheres
 4.2 Radial Space
 4.3 Restriction Lines
 4.4 Restriction Hyperplanes
 4.5 Duality and Uniqueness

5. Conclusion

References

Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part IV</td>
<td>Computer Vision</td>
</tr>
</tbody>
</table>

Part IV Computer Vision

Image Sensor Model Using Geometric Algebra: From Calibration to Motion Estimation

Thibaud Debaecker, Ryad Benosman, and Sio H. Ieng

1. Introduction

2. Introduction to Conformal Geometric Algebra

 2.1 Geometric Algebras
 2.2 Conformal Geometric Algebra (CGA)

3. General Model of a Cone-Pixels Camera

 3.1 Geometric Settings
 3.2 The General Model of a Central Cone-Pixel Camera
 3.3 Intersection of Cones

4. General Cone-Pixel Camera Calibration

 4.1 Experimental Protocol
 4.2 Calibration Experimental Results

5. Motion Estimation

 5.1 Problem Formulation
 5.2 Cone Intersection Score Functions
 5.3 Simulation Experiments for Motion Estimation Using Cone Intersection Criterion

6. Conclusion and Future Works

References

Model-Based Visual Self-localization Using Gaussian Spheres

David Gonzalez-Aguirre, Tamim Asfour, Eduardo Bayro-Corrochano, and Ruediger Dillmann

1. Motivation

2. Outline of Visual Self-localization

 2.1 Visual Acquisition of Landmarks
 2.2 Data Association for Model Matching
 2.3 Pose-Estimation Optimization

3. Uncertainty

 3.1 Image-to-Space Uncertainty
 3.2 Space-to-Ego Uncertainty

4. Geometry and Uncertainty Model

 4.1 Gaussian Spheres
 4.2 Radial Space
 4.3 Restriction Lines
 4.4 Restriction Hyperplanes
 4.5 Duality and Uniqueness

5. Conclusion

References
Part V Conformal Mapping and Fluid Analysis

Geometric Characterization of M-Conformal Mappings 327
 K. Gürlebeck and J. Morais
1 Introduction 327
2 Preliminaries 329
3 Monogenic-Conformal Mappings and Their Relation to Monogenic Functions 331
4 Influence of the Linear Part of a Monogenic Function 332
5 Observations and Perspectives .. 340
References .. 342

Fluid Flow Problems with Quaternionic Analysis—An Alternative Conception 345
 K. Gürlebeck and W. Sprößig
1 Introduction .. 345
2 Operator Calculus 346
 2.1 Operator Triple 347
 2.2 Plemelj-Type Projections 347
 2.3 Examples of L-Holomorphy 348
 2.4 Quaternionic Analysis 348
 2.5 Bergman–Hodge Decomposition 350
 2.6 Quaternionic Operator Calculus 351
 2.7 Discrete Quaternionic Analysis 352
3 Fluid Flow Problems 353
 3.1 A Brief History of Fluid Dynamics 353
 3.2 Stationary Linear Stokes Problem 354
 3.3 Nonlinear Stokes Problem 355
 3.4 Stationary Navier–Stokes Problem 356
 3.5 Navier–Stokes Equations with Heat Conduction 357
 3.6 Continuous and Discrete Teodorescu Transforms 359
 3.7 Discrete Version of Navier–Stokes Equations 360
 3.8 Stationary Magneto-Hydromechanics 360
4 Time-Dependent Fluid Flow Problems 366
 4.1 Characterization of Fluids 366
5 Rothe’s Method of Semi-Discretization 368
 5.1 Time-Dependent Stokes Problem 368
 5.2 Oseen’s Equation 369
 5.3 A Special Discretization Method 369
 5.4 $(D + ia)$-Holomorphic Functions 371
6 Approximation and Stability ... 373
 6.1 Approximation Property 373
 6.2 Stability ... 374
 6.3 Representation Formulae 374
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>More Relevant Problems in Fluid Dynamics</td>
<td>375</td>
</tr>
<tr>
<td>7.1</td>
<td>Magnetic Benard’s Problem</td>
<td>375</td>
</tr>
<tr>
<td>7.2</td>
<td>Boussinesq’s Formulation of Poisson–Stokes’ Problem</td>
<td>377</td>
</tr>
<tr>
<td>7.3</td>
<td>Shallow Water Equations</td>
<td>378</td>
</tr>
<tr>
<td>7.4</td>
<td>Forecasting Equations</td>
<td>378</td>
</tr>
<tr>
<td>8</td>
<td>Numerical Examples</td>
<td>379</td>
</tr>
<tr>
<td>9</td>
<td>Conclusions</td>
<td>380</td>
</tr>
</tbody>
</table>

Part VI Crystallography, Holography and Complexity

Interactive 3D Space Group Visualization with CLUCalc and Crystallographic Subperiodic Groups in Geometric Algebra

Eckhard M.S. Hitzer, Christian Perwass, and Daisuke Ichikawa

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>385</td>
</tr>
<tr>
<td>2</td>
<td>Point Groups and Space Groups in Clifford Geometric Algebra</td>
<td>386</td>
</tr>
<tr>
<td>2.1</td>
<td>Cartan–Dieudonné and Geometric Algebra</td>
<td>386</td>
</tr>
<tr>
<td>2.2</td>
<td>Two-Dimensional Point Groups</td>
<td>387</td>
</tr>
<tr>
<td>2.3</td>
<td>Three-Dimensional Point Groups</td>
<td>387</td>
</tr>
<tr>
<td>2.4</td>
<td>Space Groups</td>
<td>388</td>
</tr>
<tr>
<td>3</td>
<td>Interactive Software Implementation</td>
<td>390</td>
</tr>
<tr>
<td>3.1</td>
<td>The Space Group Visualizer GUI</td>
<td>390</td>
</tr>
<tr>
<td>3.2</td>
<td>Space Group and Symmetry Selection</td>
<td>390</td>
</tr>
<tr>
<td>3.3</td>
<td>Mouse Pointer Interactivity</td>
<td>391</td>
</tr>
<tr>
<td>3.4</td>
<td>Visualization Options in Detail</td>
<td>393</td>
</tr>
<tr>
<td>3.5</td>
<td>Integration with the Online International Tables of Crystallography</td>
<td>393</td>
</tr>
<tr>
<td>4</td>
<td>Subperiodic Groups Represented in Clifford Geometric Algebra</td>
<td>394</td>
</tr>
<tr>
<td>4.1</td>
<td>Frieze Groups</td>
<td>395</td>
</tr>
<tr>
<td>4.2</td>
<td>Rod Groups</td>
<td>396</td>
</tr>
<tr>
<td>4.3</td>
<td>Layer Groups</td>
<td>396</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>397</td>
</tr>
</tbody>
</table>

Geometric Algebra Model of Distributed Representations

Agnieszka Patyk

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>401</td>
</tr>
<tr>
<td>2</td>
<td>Geometric Algebra Model</td>
<td>402</td>
</tr>
<tr>
<td>3</td>
<td>Recognition</td>
<td>406</td>
</tr>
<tr>
<td>3.1</td>
<td>Right-Hand-Side Questions</td>
<td>407</td>
</tr>
<tr>
<td>3.2</td>
<td>Appropriate-Hand-Side Reversed Questions</td>
<td>412</td>
</tr>
<tr>
<td>4</td>
<td>Other Measures of Similarity</td>
<td>413</td>
</tr>
<tr>
<td>4.1</td>
<td>Matrix Representation</td>
<td>413</td>
</tr>
<tr>
<td>4.2</td>
<td>The Hamming Measure of Similarity</td>
<td>416</td>
</tr>
<tr>
<td>4.3</td>
<td>The Euclidean Measure of Similarity</td>
<td>416</td>
</tr>
<tr>
<td>4.4</td>
<td>Performance of Hamming and Euclidean Measures</td>
<td>417</td>
</tr>
</tbody>
</table>
Contents

5 The Average Number of Potential Answers ... 418
6 Comparison with Previously Developed Models 425
7 Conclusion ... 429
References ... 429

Computational Complexity Reductions Using Clifford Algebras 431
René Schott and G. Stacey Staples
1 Introduction .. 431
2 Preliminaries .. 432
 2.1 Graph Preliminaries ... 435
3 Complexity Reduction for Graph Problems: Nilpotent Adjacency
 Matrix Approach ... 437
4 Matrix-Free Approach to Representing Graphs 440
5 Conclusion ... 451
References ... 452

Part VII Efficient Computing with Clifford (Geometric) Algebra

Efficient Algorithms for Factorization and Join of Blades 457
Daniel Fontijne and Leo Dorst
1 Introduction .. 457
2 Blade Factorization ... 459
 2.1 New Algorithm for Blade Factorization 459
3 Algorithms for Computing the Join of Blades 462
 3.1 Fast Join Algorithm .. 462
 3.2 Computational Example ... 463
 3.3 Grade Stability of Fast Join Algorithm 464
 3.4 Improved Fast Join Algorithm .. 465
 3.5 Numerical Stability of the Fast Join Algorithms 465
4 Implementation .. 466
 4.1 Code Generation ... 467
 4.2 Implementation of the Fast Factorization Algorithm 467
 4.3 Implementation of the Fast Join Algorithm 467
 4.4 Implementation of the Delta Product .. 469
 4.5 Benchmarks ... 469
5 Discussion ... 473
 5.1 Fast Factorization Algorithm .. 473
 5.2 FastJoin Algorithms .. 474
 5.3 Simultaneous Computation of Meet and Join Costs More 474
6 Conclusion ... 475
References ... 476

Gaalop—High Performance Parallel Computing Based on Conformal
Geometric Algebra .. 477
Dietmar Hildenbrand, Joachim Pitt, and Andreas Koch
1 Introduction .. 477
Some Applications of Gröbner Bases in Robotics and Engineering

Rafal Abłamowicz

1 Introduction .. 495
2 Gröbner Basis Theory in Polynomial Rings 495
 2.1 Examples of Using Gröbner Bases 498
3 Fermat Curves and Bézier Cubics 503
 3.1 Fermat Curves ... 503
 3.2 Bézier Cubics .. 504
4 Conclusions .. 516
References ... 516

Index .. 519
Geometric Algebra Computing
in Engineering and Computer Science
Bayro Corrochano, E.; Scheuermann, G. (Eds.)
2010, XXII, 526 p., Hardcover