Contents

1 Polynomial Matrix Fraction Descriptions 1
 1.1 Right Coprime Matrix Fraction Description 1
 1.2 Left Coprime Matrix Fraction Description 10

2 State Feedback Control 17
 2.1 State Feedback in the Time Domain 18
 2.2 Parameterization of the State Feedback in the Frequency
 Domain ... 20

3 State Observers .. 27
 3.1 The Reduced-order Observer in the Time Domain 28
 3.2 Parameterization of the Full-order Observer in the Frequency
 Domain ... 32
 3.3 Parameterization of the Reduced-order Observer in the
 Frequency Domain 36

4 Observer-based Compensators 51
 4.1 The Observer-based Compensator in the Time Domain 52
 4.2 Representations of the Observer-based Compensator in the Frequency Domain 54
 4.3 Computation of the Observer-based Compensator in the Frequency Domain 54
 4.4 Summary of the Steps for the Design of Observer-based
 Compensators in the Frequency Domain 64
 4.5 Prevention of Problems Caused by Input-signal Restrictions . 70

5 Parametric Compensator Design 81
 5.1 Parametric Design of State Feedback in the Time Domain ... 82
 5.2 Parametric Design of State Feedback in the Frequency Domain 84
 5.2.1 Definition of the Pole Directions 84
 5.2.2 Parametric Expression of the State Feedback 85
5.2.3 Relation Between the Pole Directions and the Closed-loop Eigenvectors .. 89
5.2.4 Relation Between the Pole Directions and the Invariant Parameter Vectors 90
5.3 Parameterization of the State Feedback Gain Using the Pole Directions .. 90
5.4 Parametric Design of Reduced-order Observers in the Frequency Domain .. 92
 5.4.1 Definition of the Observer Pole Directions 92
 5.4.2 Parametric Expression for the Observer Design 93
 5.4.3 Relation Between the Observer Pole Directions and the Left Eigenvectors of the Observer 97
 5.4.4 Parameterization of Observers in the Time Domain Using the Pole Directions 99
5.5 Parametric Design of Reduced-order Observers in the Time Domain .. 103

6 Decoupling Control .. 107
 6.1 Diagonal Decoupling .. 108
 6.1.1 Criterion for Diagonal Decoupling 108
 6.1.2 A Simple Solution of the Diagonal Decoupling Problem 111
 6.1.3 Diagonal Decoupling Using the Parametric Approach . 115
 6.2 Decoupling with Coupled Rows 119
 6.2.1 Decoupling of Non-minimum Phase Systems 119
 6.2.2 Decoupling of Non-decouplable Systems 124
 6.2.3 Decoupling of Non-minimum Phase and Non-decouplable Systems .. 127

7 Disturbance Rejection Using the Internal Model Principle . 131
 7.1 Time-domain Approach to Disturbance Rejection 132
 7.2 State Feedback Control of the Augmented System in the Frequency Domain 142
 7.3 State Observer for the Non-augmented System in the Frequency Domain ... 147
 7.4 Design of the Observer-based Compensator with an Internal Signal Model in the Frequency Domain 148

8 Optimal Control and Estimation 167
 8.1 The Linear Quadratic Regulator in the Time Domain 168
 8.2 The Linear Quadratic Regulator in the Frequency Domain . 169
 8.3 The Stationary Kalman Filter in the Time Domain 174
 8.4 The Stationary Kalman Filter in the Frequency Domain 177
9 Model-matching Control with Two Degrees of Freedom 185
 9.1 Model-based Feedforward Control in the Time Domain 187
 9.2 Model-based Feedforward Control in the Frequency Domain . 189
 9.3 Tracking Control by State Feedback in the Time Domain 190
 9.3.1 Tracking Controller without Disturbance Rejection 190
 9.3.2 Tracking Controller with Disturbance Rejection 191
 9.4 Tracking Control by State Feedback in the Frequency Domain 195
 9.5 Observer-based Tracking Control in the Time Domain 198
 9.6 Observer-based Tracking Control in the Frequency Domain 200

10 Observer-based Compensators with Disturbance
 Rejection for Discrete-time Systems 209
 10.1 Discrete-time Control in the Time Domain 210
 10.2 Discrete-time Control in the Frequency Domain 215

11 Optimal Control and Estimation for Discrete-time Systems 225
 11.1 The Linear Quadratic Regulator in the Time Domain 226
 11.2 The Linear Quadratic Regulator in the Frequency Domain ... 227
 11.3 The Stationary Kalman Filter in the Time Domain 232
 11.4 The Stationary Kalman Filter in the Frequency Domain 237
 11.4.1 Parameterization of the Stationary Kalman Filter for an a posteriori Estimate in the Frequency Domain 237
 11.4.2 Frequency-domain Design of the Stationary Kalman Filter ... 246
 11.5 Observer-based Compensators with a posteriori State
 Estimate in the Frequency Domain 255

A Appendix .. 267
 A.1 Computing a Row-reduced Polynomial Matrix \(\tilde{D}_\kappa(s) \) 267
 A.2 Proof of Theorem 4.1 272

References .. 277

Index ... 281
Design of Observer-based Compensators
From the Time to the Frequency Domain
Hippe, P.; Deutscher, J.
2009, XIII, 285 p., Hardcover
ISBN: 978-1-84882-536-9