Contents

List of Figures ... xv

1 Introduction .. 1
 1.1 Cooperative, Pliable and Robust Systems 1
 1.1.1 Control Through an Intermittent Network 2
 1.1.2 Cooperative Behaviors 4
 1.1.3 Pliable and Robust Systems 10
 1.2 Modeling of Constrained Mechanical Systems 11
 1.2.1 Motion Constraints 11
 1.2.2 Kinematic Model 12
 1.2.3 Dynamic Model 13
 1.2.4 Hamiltonian and Energy 15
 1.2.5 Reduced-order Model 15
 1.2.6 Underactuated Systems 17
 1.3 Vehicle Models ... 18
 1.3.1 Differential-drive Vehicle 18
 1.3.2 A Car-like Vehicle 20
 1.3.3 Tractor-trailer Systems 23
 1.3.4 A Planar Space Robot 25
 1.3.5 Newton’s Model of Rigid-body Motion 26
 1.3.6 Underwater Vehicle and Surface Vessel 29
 1.3.7 Aerial Vehicles 31
 1.3.8 Other Models 34
 1.4 Control of Heterogeneous Vehicles 34
 1.5 Notes and Summary 37

2 Preliminaries on Systems Theory 39
 2.1 Matrix Algebra 39
 2.2 Useful Theorems and Lemma 43
 2.2.1 Contraction Mapping Theorem 43
 2.2.2 Barbalat Lemma 44
Contents

2.2.3 Comparison Theorem ... 45
2.3 Lyapunov Stability Analysis 48
2.3.1 Lyapunov Direct Method 51
2.3.2 Explanations and Enhancements 54
2.3.3 Control Lyapunov Function 58
2.3.4 Lyapunov Analysis of Switching Systems 59
2.4 Stability Analysis of Linear Systems 62
2.4.1 Eigenvalue Analysis of Linear Time-invariant Systems .. 62
2.4.2 Stability of Linear Time-varying Systems 63
2.4.3 Lyapunov Analysis of Linear Systems 66
2.5 Controllability .. 69
2.6 Non-linear Design Approaches 73
2.6.1 Recursive Design .. 73
2.6.2 Feedback Linearization 75
2.6.3 Optimal Control ... 77
2.6.4 Inverse Optimality and Lyapunov Function 78
2.7 Notes and Summary ... 79

3 Control of Non-holonomic Systems 81
3.1 Canonical Form and Its Properties 81
3.1.1 Chained Form .. 82
3.1.2 Controllability ... 85
3.1.3 Feedback Linearization 87
3.1.4 Options of Control Design 90
3.1.5 Uniform Complete Controllability 92
3.1.6 Equivalence and Extension of Chained Form 96

3.2 Steering Control and Real-time Trajectory Planning 98
3.2.1 Navigation of Chained Systems 98
3.2.2 Path Planning in a Dynamic Environment 104
3.2.3 A Real-time and Optimized Path Planning Algorithm . 109

3.3 Feedback Control of Non-holonomic Systems 116
3.3.1 Tracking Control Design 118
3.3.2 Quadratic Lyapunov Designs of Feedback Control 120
3.3.3 Other Feedback Designs 128

3.4 Control of Vehicle Systems 130
3.4.1 Formation Control 131
3.4.2 Multi-objective Reactive Control 136

3.5 Notes and Summary ... 147

4 Matrix Theory for Cooperative Systems 153
4.1 Non-negative Matrices and Their Properties 153
4.1.1 Reducible and Irreducible Matrices 154
4.1.2 Perron-Frobenius Theorem 155
4.1.3 Cyclic and Primitive Matrices 158
4.2 Importance of Non-negative Matrices 161
 4.2.1 Geometrical Representation of Non-negative Matrices 165
 4.2.2 Graphical Representation of Non-negative Matrices 166
4.3 M-matrices and Their Properties 167
 4.3.1 Diagonal Dominance .. 167
 4.3.2 Non-singular M-matrices .. 168
 4.3.3 Singular M-matrices .. 170
 4.3.4 Irreducible M-matrices .. 172
 4.3.5 Diagonal Lyapunov Matrix .. 174
 4.3.6 A Class of Interconnected Systems 176
4.4 Multiplicative Sequence of Row-stochastic Matrices 177
 4.4.1 Convergence of Power Sequence 178
 4.4.2 Convergence Measures .. 179
 4.4.3 Sufficient Conditions on Convergence 187
 4.4.4 Necessary and Sufficient Condition on Convergence 188
4.5 Notes and Summary .. 192

5 Cooperative Control of Linear Systems 195
 5.1 Linear Cooperative System ... 195
 5.1.1 Characteristics of Cooperative Systems 196
 5.1.2 Cooperative Stability .. 198
 5.1.3 A Simple Cooperative System 200
 5.2 Linear Cooperative Control Design 201
 5.2.1 Matrix of Sensing and Communication Network 202
 5.2.2 Linear Cooperative Control 203
 5.2.3 Conditions of Cooperative Controllability 206
 5.2.4 Discrete Cooperative System 209
 5.3 Applications of Cooperative Control 210
 5.3.1 Consensus Problem .. 210
 5.3.2 Rendezvous Problem and Vector Consensus 212
 5.3.3 Hands-off Operator and Virtual Leader 212
 5.3.4 Formation Control ... 216
 5.3.5 Synchronization and Stabilization of Dynamical Systems 222
 5.4 Ensuring Network Connectivity .. 223
 5.5 Average System and Its Properties 226
 5.6 Cooperative Control Lyapunov Function 229
 5.6.1 Fixed Topology .. 230
 5.6.2 Varying Topologies ... 237
 5.7 Robustness of Cooperative Systems 238
 5.8 Integral Cooperative Control Design 248
 5.9 Notes and Summary .. 251
6 Cooperative Control of Non-linear Systems
 6.1 Networked Systems with Balanced Topologies
 6.2 Networked Systems of Arbitrary Topologies
 6.2.1 A Topology-based Comparison Theorem
 6.2.2 Generalization
 6.3 Cooperative Control Design
 6.3.1 Systems of Relative Degree One
 6.3.2 Systems in the Feedback Form
 6.3.3 Affine Systems
 6.3.4 Non-affine Systems
 6.3.5 Output Cooperation
 6.4 Discrete Systems and Algorithms
 6.5 Driftless Non-holonomic Systems
 6.5.1 Output Rendezvous
 6.5.2 Vector Consensus During Constant Line Motion
 6.6 Robust Cooperative Behaviors
 6.6.1 Delayed Sensing and Communication
 6.6.2 Vehicle Cooperation in a Dynamic Environment
 6.7 Notes and Summary

References

Index
Cooperative Control of Dynamical Systems
Applications to Autonomous Vehicles
Qu, Z.
2009, XVI, 325 p., Hardcover
ISBN: 978-1-84882-324-2