
Preface

vii

We’ve known about algorithms for millennia, but we’ve only been writing com-
puter programs for a few decades. A big difference between the Euclidean or
Eratosthenes age and ours is that since the middle of the twentieth century,
we express the algorithms we conceive using formal languages: programming
languages.

Computer scientists are not the only ones who use formal languages. Op-
tometrists, for example, prescribe eyeglasses using very technical expressions,
such as “OD: -1.25 (-0.50) 180◦ OS: -1.00 (-0.25) 180◦”, in which the parenthe-
ses are essential. Many such formal languages have been created throughout
history: musical notation, algebraic notation, etc. In particular, such languages
have long been used to control machines, such as looms and cathedral chimes.

However, until the appearance of programming languages, those languages
were only of limited importance: they were restricted to specialised fields with
only a few specialists and written texts of those languages remained relatively
scarce. This situation has changed with the appearance of programming lan-
guages, which have a wider range of applications than the prescription of eye-
glasses or the control of a loom, are used by large communities, and have allowed
the creation of programs of many hundreds of thousands of lines.

The appearance of programming languages has allowed the creation of ar-
tificial objects, programs, of a complexity incomparable to anything that has
come before, such as steam engines or radios. These programs have, in return,
allowed the creation of other complex objects, such as integrated circuits made
of millions of transistors, or mathematical proofs that are hundreds of thou-
sands of pages long. It is very surprising that we have succeeded in writing
such complex programs in languages comprising such a small number of con-
structs — assignment, loops, etc. — that is to say in languages barely more
sophisticated than the language of prescription eyeglasses.



viii Preface

Programs written in these programming languages have the novelty of not
only being understandable by humans, which brings them closer to the scores
used by organists, but also readable by machines, which brings them closer to
the punch cards used in Barbarie organs.

The appearance of programming languages has therefore profoundly im-
pacted our relationship with language, complexity, and machines.

This book is an introduction to the principles of programming languages.
It uses the Java language for support. It is intended for students who already
have some experience with computer programming. It is assumed that they
have learned some programming empirically, in a single programming language,
other than Java.

The first objective of this book will then be to learn the fundamentals
of the Java programming language. However, knowing a single programming
language is not sufficient to be a good programmer. For this, you must not
only know several languages, but be able to easily learn new ones. This requires
that you understand universal concepts like functions or cells, which exist in
one form or another in all programming languages. This can only be done by
comparing two or more languages. In this book, two comparison languages have
been chosen: Caml and C. Therefore, the goal is not for the students to learn
three programming languages simultaneously, but that with the comparison
with Caml and C, they can learn the principles around which programming
languages are created. This understanding will allow them to develop, if they
wish, a real competence in Caml or in C, or in any other programming language.

Another objective of this book is for the students to begin acquiring the
tools which permit them to precisely define the meaning of the program. This
precision is, indeed, the only means to clearly understand what happens when
a program is executed, and to reason in situations where complexity defies
intuition. The idea is to describe the meaning of a statement by a function
operating on a set of states. However, our expectations of this objective remain
modest: students wishing to pursue this goal will have to do so elsewhere.

The final objective of this course is to learn basic algorithms for lists and
trees. Here too, our expectations remain modest: students wishing to pursue
this will also have to look elsewhere.



http://www.springer.com/978-1-84882-031-9


