Contents

1 Introduction .. 1
 1.1 Goal ... 1
 1.2 A Brief History of Articulated Robot Hands 2
 1.2.1 The 1970s .. 2
 1.2.2 The 1980s .. 4
 1.3 Overview ... 11

2 Observation of Soft-fingered Grasping and Manipulation .. 13
 2.1 Introduction .. 13
 2.2 Object Pinching by a Pair of 1-DOF Fingers 14
 2.3 Rotation of a Pinched Object by External Force 16
 2.4 Concluding Remarks ... 17

3 Elastic Model of a Deformable Fingertip 19
 3.1 Introduction .. 19
 3.2 Static Elastic Model of a Hemispherical Soft Fingertip 21
 3.2.1 Fingertip Stiffness 21
 3.2.2 Elastic Force .. 24
 3.2.3 Elastic Potential Energy 25
 3.2.4 Relationship Between Elastic Force and Elastic Energy 25
 3.3 Comparison with Hertzian Contact 27
 3.4 Measurement of Young’s Modulus 28
 3.5 Compression Test .. 29
 3.6 Concluding Remarks ... 32

4 Fingertip Model with Tangential Deformation 33
 4.1 Introduction .. 33
 4.2 Two-dimensional Elastic Energy Model 34
 4.2.1 Derivation of the Energy Equation 34
 4.2.2 Local Minimum of Elastic Potential Energy (LMEE) .. 36
 4.2.3 Restoring Moment for a Contacted Object 37
Contents

4.2.4 Boundary Condition of Slip Motion 38
4.3 Formulation of Geometric Constraints 39
4.3.1 Normal Constraints 39
4.3.2 Tangential Constraints 40
4.3.3 LMEE with Constraints (LMEEwC) 43
4.4 Concluding Remarks 43

5 Variational Formulations in Mechanics 45
5.1 Introduction 45
5.2 Variational Principles 45
5.2.1 Variational Principle in Statics 45
5.2.2 Variational Principle in Dynamics 48
5.3 Numerical Optimization of Energy Functions 51
5.3.1 Nelder–Mead Method 51
5.3.2 Multiplier Method 55
5.4 Numerical Integration of Equations of Motion 60
5.4.1 Runge–Kutta Method 60
5.4.2 Constraint Stabilization Method 63
5.4.3 Stabilization of Pfaffian Constraints 66
5.5 Concluding Remarks 70

6 Statics of Soft-fingered Grasping and Manipulation 71
6.1 Introduction 71
6.2 Static Analysis Based on Force/Moment Equilibrium 71
6.2.1 Internal Energy Function 71
6.2.2 Numerical Analysis 72
6.3 Simulation 72
6.3.1 Analysis Without Gravity 72
6.3.2 Analysis Under Gravity 75
6.3.3 Degrees of Freedom Desired for Stable Manipulation 78
6.4 Experiments 78
6.5 Concluding Remarks 81

7 Dynamics of Soft-fingered Grasping and Manipulation 83
7.1 Introduction 83
7.2 Dynamics of Soft-fingered Grasping and Manipulation 83
7.3 Simulation of Soft-fingered Grasping and Manipulation 86
7.3.1 Numerical Integration of Lagrange Equations of Motion Under Geometric Constraints 86
7.3.2 Computation of Equations of Motion 87
7.4 Simulation Results 91
7.5 Experimental Results 95
7.6 Discussion 98
7.7 Conclusion and Research Perspective 98
8 Control of Soft-fingered Grasping and Manipulation

8.1 Introduction .. 101
8.2 Equations of Motion of the Two-fingered Hand 102
8.3 Simulations I: Posture Control of a Grasped Object 103
 8.3.1 Serially-coupled Two-phased Object Orientation Controller .. 103
 8.3.2 Examples of Failure 106
 8.3.3 Available Range of the Biased Torque 108
 8.3.4 Passivity Analysis .. 111
8.4 Simulations II: Responses for Time Delay 113
8.5 Experiments I: Posture Control of a Grasped Object 118
 8.5.1 Object Orientation Control Under Constant Biased Torque (Exp. 1) 119
 8.5.2 Open-loop Control of Biased Torque (Exp. 2) 121
 8.5.3 Object Orientation Control Under Variable Biased Torque (Exp. 3) 121
8.6 Experiments II: Responses for Time Delay 124
8.7 Concluding Remarks .. 132

9 Geometric and Material Nonlinear Elastic Model

9.1 Introduction .. 135
9.2 Hertzian Contact and Kao’s Elastic Model 135
9.3 Identification of Nonlinear Young’s Modulus 136
9.4 Comparison with Hertzian Contact 138
9.5 Force Comparison ... 139
9.6 Concluding Remarks .. 141

10 Non-Jacobian Control of Robotic Pinch Tasks

10.1 Introduction ... 143
10.2 Kinematic Thumb Models in Previous Studies 144
10.3 Equations of Motion ... 147
10.4 Simulations .. 149
 10.4.1 A Serial Two-phased Controller 149
 10.4.2 Revolute Joint vs. Prismatic Joint (RP Joints) 150
 10.4.3 Revolute Joint vs. Revolute Joint (RR Joints) 162
 10.4.4 Prismatic 1-DOF Hand (P Joint) 167
 10.4.5 Rotational 1-DOF Hand (R Joint) 169
10.5 Observations and Discussions 181
10.6 Concluding Remarks .. 183

11 Three-dimensional Grasping and Manipulation

11.1 Introduction .. 185
11.2 Quaternions ... 185
11.3 Spatial Geometric Constraints Between an Object and a Fingertip ... 192
11.4 Potential Energy of a Fingertip in Three-dimensional Grasping 197
11.5 Grasping and Manipulation by Three 1-DOF Fingers 201
 11.5.1 Observation ... 201
 11.5.2 Mathematical Description 202
 11.5.3 Lagrange Equations of Motion 207
 11.5.4 Simulation ... 214
11.6 Concluding Remarks ... 217

12 Conclusions .. 219
 12.1 Main Contribution ... 219
 12.2 Future Work ... 221

A Static Modeling of Fingertips ... 223
 A.1 Contact Plane Formula 223
 A.2 Spring Constant Formulation 223
 A.3 Coordinate Conversion to Derive Fingertip Stiffness 224
 A.4 Approximation Method for a Nonlinear Curve 226

B Three-dimensional Modeling of Fingertips 229
 B.1 Derivatives of Angular Velocity Matrix 229
 B.2 Bilinear Form of the Outer Product Matrix 230
 B.3 Derivatives of Relative Angle with Respect to Quaternion
 Elements .. 231
 B.4 Derivatives of Relative Angle with Respect to Finger Angle . 232
 B.5 Derivative of the Arctangent Function 233

References ... 235

Index ... 243
Mechanics and Control of Soft-fingered Manipulation
Inoue, T.; Hirai, S.
2009, XVIII, 245 p., Hardcover
ISBN: 978-1-84800-980-6