
2
Topological Properties

This chapter, in contrast to the last, shows that sets are not homeomorphic.
To show that sets S and T are not homeomorphic we construct a suitable
topological property P such that S has property P but T does not. From
the definition of a topological property, if S were homeomorphic to T , then T

would also have property P . So S and T are not homeomorphic. Thus every
topological property is a tool for proving sets to be non-homeomorphic.

We give a collection of elementary topological properties that will be useful
in the next chapter as well.

The topological properties we consider here are based on the intuitively
clear idea of a path, which mathematicians tend to think of, not as a static
object, but as a moving point. We denote by [a, b] the closed interval of all x

such that a ≤ x ≤ b.

Definition 2.1

A path α in S is a continuous mapping from the closed interval [a, b] to S for
some a, b where a < b. If α(a) = p and α(b) = q, we say that α joins p to q.

Definition 2.2

A subset S of R
n is path-connected if every pair p, q of points in S can be joined

by a path in S.
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Example 2.1

The plane is path-connected. For let p, q be any points in the plane.
The straight path given by

α(u) = p + u(q − p), 0 ≤ u ≤ 1,

joins p to q. Hence the plane is path-connected. There is nothing par-
ticularly two-dimensional about the argument, so we have also shown
that R

n is path-connected for all n ≥ 1.

Even with the sphere it would be getting complicated to write down explicit
formulae for paths. Life is made easy for us by the following result.

Theorem 2.1

The continuous image of a path-connected set is path-connected.

Proof

Suppose that S is path-connected and that T is the image of S under the
continuous mapping f . Take any points p, q in T . We must construct a path
in T joining p to q. Now there are points x, y in S such that f(x) = p and
f(y) = q. Because S is path-connected, there is a path α : [a, b] → S joining
x and y. Define β(t) = f(α(t)) for t in [a, b]. Then β is a continuous mapping
from [a, b] to T , and so is a path in T . Also β(a) = p and β(b) = q, so β joins
p to q. This completes the proof.

Example 2.2

The circle and the sphere are path-connected. The circle is the im-
age of the real line under the continuous mapping u → (cos u, sin u),
and the sphere is the continuous image of the plane under the contin-
uous mapping (u, v) → (sin u cos v, sin u sin v, cos u).

Example 2.3

The torus is path-connected, being the image of the plane under
the continuous mapping

(u, v) → (cos u, sin u, cos v, sin v).
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Example 2.4

The punctured plane—the plane with the origin removed—is path-
connected because it is the image of the whole plane under the contin-
uous mapping (x, y) → ex(cos y, sin y).

Theorem 2.2

Path-connectedness is a topological property.

Proof

Suppose that S is path-connected and that f is a homeomorphism from S to
T . Then T is the image of S under the continuous mapping f so the path-
connectedness of T follows from Theorem 2.1. This completes the proof.

Example 2.5

Let S be the real line with the origin removed. Any path in the
real line from 1 to −1 must pass through the origin. So S is not path-
connected. We now have our first proof that sets are not homeomorphic
because S cannot be homeomorphic to the real line or any of the sets
we showed to be path-connected.

Example 2.6

Figure 2.1 Example 2.6

Let T be the union of the half-axes {(0, y) : y > 0} and {(x, 0) :
x > 0}. Then T is not path-connected: any plane path joining points
on these two axes must meet the line y = x. Alternatively, we could
show that T is homeomorphic to the set S of Example 2.5.
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We use path-connectedness to make another simple topological tool. The
next step is to introduce language to express the idea that a non-path-connected
set is formed of separate pieces, or components. Let S be a set. We say that
points p, q in S are together if there is a path in S joining p to q. We wish to
define the component containing the point p to consist of all points that are
together with p, so we require the following result.

Theorem 2.3

Togetherness is an equivalence relation.

Proof

Let S be a set. Certainly, if p is in S, then p and p are together because mapping
every point of [0, 1] to p is a path in S joining p to p: thus togetherness is
reflexive. Now suppose that p, q are together and that α : [a, b] → S joins p to
q. Go backwards along α: put ω(t) = α(a+b− t). Then ω is a path in S joining
q to p, so togetherness is symmetric. Finally, to show transitivity, let α join p

to q as before and let β join q to r, where β : [c, c + h] → S. Join p to r by
going along α and then β. Define γ : [a, b + h] → S by

γ(t) = α(t), a ≤ t ≤ b

γ(t) = β(c + t − b), b ≤ t ≤ b + h.

Then γ is a path in S joining p to r. This completes the proof.

Example 2.7

Figure 2.2 Example 2.7

Let T be the union of {(0, y) : y > 0} and the whole real line. Then
each point of T can be joined to the origin by a straight path in T .
So each point is together with the origin, and, by transitivity, any two
points in T are together. Thus T is path-connected.
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Definition 2.3

A component is an equivalence class of togetherness.

Thus each point p of a set belongs to just one component, which consists
of all those points that are together with p. To prove that sets with different
numbers of components are not homeomorphic we need the following theorem.

Theorem 2.4

Homeomorphic sets have the same number of components.

Proof

Let f be a homeomorphism from S to T and suppose that α joins p to q in S.
Then, as in Theorem 1, the path t → f(α(t)) joins f(p) to f(q) in T . Hence
points that are together in S are sent to points that are together in T . Also
points that are not together in S are sent to points that are not together in
T , as otherwise the inverse of f would send points together in T to points not
together in S. So the image of a component of S is a component of T , and
the images of different components of S are different components of T . This
completes the proof.

The previous result is not quite enough to deal with the following problems.

Example 2.8

Let S be the real line with the origin removed, and let T consist of
those real numbers x such that x < 0 or x = 1. Then both S and T

have two components. But each component of S is homeomorphic to
]0, 1[, whereas T has one component homeomorphic to ]0, 1[ and the
other consisting of the single point 1. Now ]0, 1[ and {1} are not home-
omorphic, for the superficial reason that they do not have the same
number of points. Hence there is no way of pairing the components of
S with those of T so that paired components are homeomorphic. The
following theorem then tells us that S and T are not homeomorphic.

Theorem 2.5

The components of homeomorphic sets are homeomorphic in pairs.
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Proof

Let f be a homeomorphism from S to T . Theorem 2.4 was proved by showing
that a component of S can be paired with its image under f . But a set and its
image under a homeomorphism are homeomorphic, so paired components are
homeomorphic. This completes the proof.

Theorem 2.5 reduces the problem of deciding whether two sets are homeo-
morphic to the case where the sets are both path-connected.

Valuable information about a path-connected set is found by counting the
number of pieces remaining when the set is “cut” by the removal of one point.

Definition 2.4

Let S be a path-connected set. We call a point p of S an n-point of S if removing
p from S cuts S into n pieces, that is, S\{p} has n components. An n-point is
also called a cut-point of type n, and a 1-point is called a not-cut-point.

Example 2.9

Figure 2.3 Example 2.9

Each point of the open interval ]0, 1[ is a 2-point. The end points
of [0, 1] are 1-points, all other points being 2-points. The half-open
interval [0, 1[ has one 1-point, all other points being 2-points. The set
T of Example 2.7 has one 3-point, all other points being 2-points. The
circle consists of not-cut-points.

Example 2.10

The set indicated in Figure 2.4 is path-connected, has infinitely
many not-cut-points, but just one n-point for each n ≥ 2.

For the calculation of Example 2.9 to provide proof that no two of the five
sets are homeomorphic, we appeal to the next theorem.
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Figure 2.4 Example 2.10

Theorem 2.6

Homeomorphic sets have the same number of cut-points of each type.

Proof

Let f be a homeomorphism from S to T . We show that f sends each n-point
of S to an n-point of T , so that, for each n, f gives a correspondence between
the n-points of S and the n-points of T . Let p be an n-point of S. Then S\{p}
has n components. But S\{p} is homeomorphic to its image T\{f(p)} under f .
Consequently S\{p} and T\{f(p)} have the same number of components. So
T\{f(p)} has n components, and f(p) is an n-point. This completes the proof.

Example 2.11

Let S and T be the sets shown in Figure 2.5, the end points of the
“arms” being missing. Both S and T have infinitely many 2-points and
infinitely many not-cut-points. But the 2-points of S and T form the
arms, including the points joining them to the circle. Hence the set of
2-points of S is path-connected, whereas the set of 2-points of T is not.

The next theorem gives the justification for saying that S and T are there-
fore not homeomorphic.

TS

Figure 2.5 Example 2.11
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Theorem 2.7

Homeomorphic sets have homeomorphic sets of each type of cut-point.

Proof

For any set X denote the set of n-points of X by Xn. Suppose that S and T

are homeomorphic. We show that, for each n, Sn and Tn are homeomorphic.
Let f be a homeomorphism from S to T . From the proof of Theorem 2.6 we
know that f sends points in Sn to points in Tn and points not in Sn to points
not in Tn. Hence the image of Sn under the homeomorphism f is Tn, and it
follows that Sn and Tn are homeomorphic. This completes the proof.

Example 2.12

The circle and plane both consist of infinitely many not-cut-points.
Removing any pair of points from the plane leaves a path-connected
set, whereas removing any pair of points from the circle does not. To
prove that the circle and the plane are not homeomorphic, we need to
adapt our theory of cut-points to cut-pairs.

Definition 2.5

Let S be a path-connected set, and let p, q be distinct points of S. We call
{p, q} an n-pair of S if S\{p, q} has n components. An n-pair is also called a
cut-pair of type n, and a 1-pair is called a not-cut-pair.

Theorem 2.8

Homeomorphic sets have the same number of cut-pairs of each type.

Proof

Let f be a homeomorphism from S to T . We show that f sends each n-pair of S

to an n-pair of T . For each n, therefore, f gives a correspondence between the
n-pairs of S and the n-pairs of T . Let {p, q} be an n-pair of S. Then S\{p, q}
has n components. But S\{p, q} is homeomorphic to its image T\{f(p), f(q)}
under f . Consequently S\{p, q} and T\{f(p), f(q)} have the same number of
components. So T\{f(p), f(q)} has n components, and {f(p), f(q)} is an n-
pair. This completes the proof.
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EXERCISES

2.1. The plane set S is path-connected and is the union of three line
segments, each segment being not only homeomorphic to ]0, 1[ but
also straight. Find twelve examples of such a set S, no two of your
examples being homeomorphic. Show that no two of your examples
are homeomorphic.

2.2. The plane set S is path-connected and is the union of three line
segments, each segment being not only homeomorphic to [0, 1] but
also straight. Find eighteen examples of such a set S, no two of your
examples being homeomorphic. Show that no two of your examples
are homeomorphic.

2.3. The plane set S is path-connected and is the union of the axes and a
circle (a round circle, not just a set homeomorphic to a circle). Find
eight such sets S, no two being homeomorphic. Show that no two of
the sets are homeomorphic.

2.4. The plane set S is path-connected and is the union of the vertical
lines {(0, y) : 0 ≤ y ≤ 1} and {(1, y) : 0 ≤ y ≤ 1} and two horizontal
closed line segments of length 1. Find eleven examples of such a set
S, no two being homeomorphic. Show that no two of your sets are
homeomorphic.

2.5. Let L1 be the set

{(x, 0) : 0 ≤ x < 1} ∪ {(0, y) : 0 ≤ y < 1}

and let L2 be congruent to L1. The plane set T is L1 ∪ L2. Sketch
eight examples of such a set T, no two being homeomorphic. Show
that no two of your examples are homeomorphic.

2.6. The sets S and T of Figure 2.5 have points where three lines em-
anate: in fact S has one whereas T has two. Give a precise defini-
tion of an n-node, a point where n lines emanate, and show that a
homeomorphism sends an n-node to an n-node. The plane set X is
path-connected and is the union of three circles (round circles, not
just sets homeomorphic to a circle). Sketch eleven examples of such
a set X, no two being homeomorphic. Show that no two of your
examples are homeomorphic.
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