## Contents

1 Introduction ................................................... 1  
   1.1 Knowledge Representation and Reasoning ..................... 1  
      1.1.1 Knowledge-Based Systems ............................ 2  
      1.1.2 Requirements for a Knowledge Representation Formalism . 3  
   1.2 Conceptual Graphs ....................................... 8  
      1.2.1 Basic Notions ....................................... 8  
      1.2.2 Subsumption and Homomorphism ...................... 9  
      1.2.3 Formal Semantics .................................... 11  
      1.2.4 Full CGs ........................................... 12  
   1.3 A Graph-Based Approach to KR . . . . . . ...................... 13  
      1.3.1 Motivations ......................................... 13  
      1.3.2 Extensions of the Basic Formalism ................. 14  
      1.3.3 Several Approaches to CGs ............................. 16  

Part I Foundations: Basic and Simple Conceptual Graphs

2 Basic Conceptual Graphs ....................................... 21  
   2.1 Definition of Basic Conceptual Graphs (BGs) ............... 22  
      2.1.1 Vocabulary ..................................... 22  
      2.1.2 Basic Conceptual Graphs ............................ 25  
      2.1.3 SubBGs and PseudoBGs ............................ 29  
   2.2 BG Homomorphism ........................................ 30  
      2.2.1 Subsumption and Homomorphism ..................... 30  
      2.2.2 Bijective Homomorphisms and Isomorphisms ......... 33  
      2.2.3 BG Queries and Answers ............................ 34  
   2.3 BG Subsumption Properties ................................. 35  
      2.3.1 Subsumption Preorder ................................ 35  
      2.3.2 Irredundant BGs ................................... 37  
   2.4 Generalization and Specialization Operations ............ 40  
      2.4.1 Elementary Generalization Operations for BGs .... 40  
      2.4.2 Generalization and Homomorphism .................. 42
### Contents

5.4.1 Definition of CSP ........................................ 124  
5.4.2 From CSP to BGs........................................ 127  
5.4.3 From BGs to CSP ........................................ 128  
5.5 Bibliographic Notes ....................................... 132  

#### Part II Computational Aspects of Basic Conceptual Graphs

6 Basic Algorithms for BG Homomorphism ....................... 135  
6.1 Algorithms for BG Homomorphisms .......................... 135  
6.1.1 Basic Backtrack Algorithms ............................ 136  
6.1.2 Backtrack Improvements ............................... 141  
6.2 Constraint Processing ..................................... 151  
6.2.1 A Panorama of Constraint Processing Techniques ......... 151  
6.2.2 Arc-Consistency ....................................... 154  
6.2.3 Forward Checking ...................................... 159  
6.3 Label Comparison ......................................... 161  
6.3.1 Basic Data Structures and Algorithms .................... 163  
6.3.2 Related Problems ..................................... 164  
6.3.3 Tree Orders .......................................... 166  
6.3.4 Partition in Chains .................................... 167  
6.3.5 Lattices ............................................ 168  
6.4 Bibliographic Notes ....................................... 169  

7 Tractable Cases ............................................. 171  
7.1 Introduction ............................................ 171  
7.1.1 About Tractability .................................... 172  
7.1.2 The Structure of the Target BG is of No Help ......... 172  
7.2 Tractability Based on the Multigraph-Acyclicity of the Source BG ............................................. 174  
7.2.1 Acyclic Multigraphs and Trees .......................... 174  
7.2.2 BGs Trivially Logically Equivalent to Acyclic BGs ...... 184  
7.3 Tractability Based on the Hypergraph-Acyclicity of the Source BG ............................................. 185  
7.3.1 Use of a Join Tree .................................... 187  
7.3.2 Construction of a Join Tree ............................. 191  
7.3.3 Equivalence with the Existential Conjunctive Guarded Fragment ............................................. 193  
7.4 Generalizations of Graph-Acyclicity and Hypergraph-Acyclicity ............................................. 198  
7.4.1 Graphs and Treewidth .................................. 198  
7.4.2 Hypergraphs and Hypertreewidth ....................... 200  
7.4.3 Expressivity Results ................................... 201  
7.5 What About Labels? ....................................... 202  
7.6 Complementary Notes ..................................... 204
### Part I: Other Specialization/Generalization Operations

#### 8 Other Specialization/Generalization Operations .................................................. 207

8.1 The Least Generalization and Greatest Specialization of Two BGs . . 208
8.2 Basic Compatibility Notions and Maximal Joins . . 212  
8.2.1 Compatible Node Set . . 212  
8.2.2 Maximal Join . . 215
8.3 Compatible Partitions and Extended Join . . 222  
8.3.1 Compatible C-Partition and R-Partition . . 222  
8.3.2 Extended Join . . 226  
8.3.3 Join According to a Compatible Pair of C-Partitions . . 226
8.4 $G$-Specializations . . 228 
8.4.1 Surjective Homomorphism . . 228 
8.4.2 Union . . 229 
8.4.3 Inductive Definition of BGs . . 231 
8.4.4 $G$-Specializations . . 232
8.5 Type Expansion and Contraction . . 235
8.6 Bibliographic Notes . . 242

### Part II: Extensions

#### 9 Nested Conceptual Graphs .............................................. 247

9.1 Introduction . . 248
9.2 Nested Basic Graphs (NBGs) . . 249
9.3 Nested Graphs (NGs) . . 256
9.4 Nested Typed Graphs . . 258
9.5 The Semantics $\Phi_N$ . . 262 
9.5.1 Definition of $\Phi_N$ . . 263 
9.5.2 Soundness and Completeness . . 265
9.6 Representation of Nested Typed Graphs by BGs . . 267
9.7 Bibliographic Notes . . 270

#### 10 Rules ......................................................... 273

10.1 Definition and Logical Semantics of a Rule . . 273 
10.1.1 Logical Semantics of a Rule . . 276
10.1.2 Rule as a Bicolored Graph . . 277
10.2 Forward Chaining . . 278 
10.2.1 Rule Application . . 279
10.2.2 Derivation and Deduction . . 281
10.2.3 Non-Redundant Rule Application . . 284
10.2.4 Soundness and Completeness of Forward Chaining . . 286
10.3 Backward Chaining . . 291 
10.3.1 Outline of the Backward Chaining Mechanism . . 292
10.3.2 Piece Resolution . . 294
10.3.3 Soundness and Completeness of Backward Chaining . . 298
10.4 Computational Complexity of $FR$-DEDUCTION with Rules . . 301 
10.4.1 Semi-Decidability of $FR$-DEDUCTION with Rules . . 301
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2 Annotation Base</td>
<td>381</td>
</tr>
<tr>
<td>13.2.1 Exact Knowledge</td>
<td>382</td>
</tr>
<tr>
<td>13.2.2 Modules</td>
<td>383</td>
</tr>
<tr>
<td>13.2.3 Plausible Knowledge</td>
<td>384</td>
</tr>
<tr>
<td>13.3 Querying an Annotation Base</td>
<td>385</td>
</tr>
<tr>
<td>13.3.1 Exact Search</td>
<td>386</td>
</tr>
<tr>
<td>13.3.2 Approximate Search</td>
<td>386</td>
</tr>
<tr>
<td>13.4 Annotation and the Semantic Web</td>
<td>388</td>
</tr>
<tr>
<td>13.5 Conclusion</td>
<td>390</td>
</tr>
<tr>
<td>A Mathematical Background</td>
<td>393</td>
</tr>
<tr>
<td>A.1 Sets and Relations</td>
<td>394</td>
</tr>
<tr>
<td>A.1.1 Sets and Elements</td>
<td>394</td>
</tr>
<tr>
<td>A.1.2 Relations and Mappings</td>
<td>395</td>
</tr>
<tr>
<td>A.2 Graphs</td>
<td>397</td>
</tr>
<tr>
<td>A.2.1 Directed Graphs</td>
<td>397</td>
</tr>
<tr>
<td>A.2.2 Homomorphism</td>
<td>399</td>
</tr>
<tr>
<td>A.2.3 Different Sorts of Graphs</td>
<td>400</td>
</tr>
<tr>
<td>A.2.4 Hypergraphs</td>
<td>403</td>
</tr>
<tr>
<td>A.3 Ordered Sets</td>
<td>403</td>
</tr>
<tr>
<td>A.3.1 Basic Notions</td>
<td>403</td>
</tr>
<tr>
<td>A.3.2 Lattices</td>
<td>405</td>
</tr>
<tr>
<td>A.4 First Order Logic (FOL)</td>
<td>406</td>
</tr>
<tr>
<td>A.4.1 Syntax</td>
<td>406</td>
</tr>
<tr>
<td>A.4.2 Semantics and Models</td>
<td>408</td>
</tr>
<tr>
<td>A.4.3 Clausal Form</td>
<td>409</td>
</tr>
<tr>
<td>A.4.4 Resolution and SLD-Resolution</td>
<td>409</td>
</tr>
<tr>
<td>A.5 Algorithm and Problem Complexity</td>
<td>410</td>
</tr>
<tr>
<td>References</td>
<td>413</td>
</tr>
<tr>
<td>Index</td>
<td>423</td>
</tr>
</tbody>
</table>
Graph-based Knowledge Representation
Computational Foundations of Conceptual Graphs
Chein, M.; Mugnier, M.-L.
2009, XIV, 428 p., Hardcover