This is the second volume of a book series that provides a modern, algorithmic introduction to digital image processing. It is designed to be used both by learners desiring a firm foundation on which to build and practitioners in search of critical analysis and modern implementations of the most important techniques. This updated and enhanced paperback edition of our comprehensive textbook *Digital Image Processing: An Algorithmic Approach Using Java* packages the original material into a series of compact volumes, thereby supporting a flexible sequence of courses in digital image processing. Tailoring the contents to the scope of individual semester courses is also an attempt to provide affordable (and “backpack-compatible”) textbooks without compromising the quality and depth of content.

This second volume, titled *Core Algorithms*, extends the introductory material presented in the first volume (*Fundamental Techniques*) with additional techniques that are, nevertheless, part of the standard image processing toolbox. A forthcoming third volume (*Advanced Techniques*) will extend this series and add important material beyond the elementary level, suitable for an advanced undergraduate or even graduate course.

Math, Algorithms, and “Real” Code

It has been our experience in teaching in this field that mastering the core takes more than just reading about the techniques—it requires active construction and experimentation with the *algorithms* to acquire a feeling for how to use these methods in the real world. Internet search engines have made finding *someone’s* code for almost any imaging problem as simple as coming up with a succinct enough set of keywords. However, the problem is not to find *a* solution, but developing one’s own and understanding how it works—or why it
eventually does not. Whereas we feel that the real value of this series is not in its code, but rather in the critical selection of algorithms, illustrated explanations, and concise mathematical derivations, we continue to augment our algorithms with complete implementations, as even the best description of a method often omits some essential element necessary for the actual implementation, which only the unambiguous semantics of a real programming language can provide.

Online Resources

The authors maintain a Website for this text that provides supplementary materials, including the complete Java source code for the examples, the test images used in the examples, and corrections. Visit this site at

www.imagingbook.com

Additional materials are available for educators, including a complete set of figures, tables, and mathematical elements shown in the text, in a format suitable for easy inclusion in presentations and course notes. Comments, questions, and corrections are welcome and should be addressed to

imagingbook@gmail.com

Acknowledgements

As with its predecessors, this book would not have been possible without the understanding and steady support of our families. Thanks go to Wayne Rasband (NIH) for developing and refining ImageJ and for his truly outstanding support of the community. We appreciate the contribution from many careful readers who have contacted us to suggest new topics, recommend alternative solutions, or to suggest corrections. Finally, we are grateful to Wayne Wheeler for initiating this book series and Catherine Brett and her colleagues at Springer’s UK and New York offices for their professional support.

Hagenberg, Austria / Washington DC, USA
June 2008
Contents

2.4.6 Topological Properties .. 45
2.5 Exercises ... 46

3. **Detecting Simple Curves** .. 49
3.1 Salient Structures ... 49
3.2 Hough Transform ... 50
 3.2.1 Parameter Space .. 51
 3.2.2 Accumulator Array .. 54
 3.2.3 A Better Line Representation 54
3.3 Implementing the Hough Transform 55
 3.3.1 Filling the Accumulator Array 56
 3.3.2 Analyzing the Accumulator Array 56
 3.3.3 Hough Transform Extensions 60
3.4 Hough Transform for Circles and Ellipses 63
 3.4.1 Circles and Arcs .. 64
 3.4.2 Ellipses .. 66
3.5 Exercises ... 67

4. **Corner Detection** .. 69
4.1 Points of Interest ... 69
4.2 Harris Corner Detector .. 70
 4.2.1 Local Structure Matrix .. 70
 4.2.2 Corner Response Function (CRF) 71
 4.2.3 Determining Corner Points 72
 4.2.4 Example ... 72
4.3 Implementation .. 72
 4.3.1 Step 1: Computing the Corner Response Function 76
 4.3.2 Step 2: Selecting “Good” Corner Points 79
 4.3.3 Displaying the Corner Points 83
 4.3.4 Summary ... 83
4.4 Exercises ... 84

5. **Color Quantization** .. 85
5.1 Scalar Color Quantization ... 86
5.2 Vector Quantization .. 88
 5.2.1 Populousity algorithm ... 88
 5.2.2 Median-cut algorithm ... 88
 5.2.3 Octree algorithm .. 89
 5.2.4 Other methods for vector quantization 94
5.3 Exercises ... 95
6. **Colorimetric Color Spaces** ... 97
 6.1 CIE Color Spaces ... 98
 6.1.1 CIE XYZ color space ... 98
 6.1.2 CIE \(x, y\) chromaticity .. 99
 6.1.3 Standard illuminants ... 101
 6.1.4 Gamut .. 102
 6.1.5 Variants of the CIE color space 103
 6.2 CIE \(L^*a^*b^*\) .. 104
 6.2.1 Transformation CIE XYZ \(\rightarrow L^*a^*b^*\) 104
 6.2.2 Transformation \(L^*a^*b^* \rightarrow \) CIE XYZ 105
 6.2.3 Measuring color differences 105
 6.3 sRGB ... 106
 6.3.1 Linear vs. nonlinear color components 107
 6.3.2 Transformation CIE XYZ \(\rightarrow \) sRGB 108
 6.3.3 Transformation sRGB \(\rightarrow \) CIE XYZ 108
 6.3.4 Calculating with sRGB values 109
 6.4 Adobe RGB .. 111
 6.5 Chromatic Adaptation .. 111
 6.5.1 XYZ scaling .. 112
 6.5.2 Bradford adaptation ... 113
 6.6 Colorimetric Support in Java .. 114
 6.6.1 sRGB colors in Java .. 114
 6.6.2 Profile connection space (PCS) 115
 6.6.3 Color-related Java classes 118
 6.6.4 A \(L^*a^*b^*\) color space implementation 120
 6.6.5 ICC profiles .. 121
 6.7 Exercises .. 124

7. **Introduction to Spectral Techniques** 125
 7.1 The Fourier Transform .. 126
 7.1.1 Sine and Cosine Functions 126
 7.1.2 Fourier Series of Periodic Functions 130
 7.1.3 Fourier Integral .. 130
 7.1.4 Fourier Spectrum and Transformation 131
 7.1.5 Fourier Transform Pairs 132
 7.1.6 Important Properties of the Fourier Transform 136
 7.2 Working with Discrete Signals 137
 7.2.1 Sampling ... 137
 7.2.2 Discrete and Periodic Functions 144
 7.3 The Discrete Fourier Transform (DFT) 144
 7.3.1 Definition of the DFT .. 144
7.3.2 Discrete Basis Functions .. 147
7.3.3 Aliasing Again! .. 148
7.3.4 Units in Signal and Frequency Space 152
7.3.5 Power Spectrum .. 153
7.4 Implementing the DFT .. 154
 7.4.1 Direct Implementation .. 154
 7.4.2 Fast Fourier Transform (FFT) 155
7.5 Exercises .. 156

8. The Discrete Fourier Transform in 2D 157
 8.1 Definition of the 2D DFT 157
 8.1.1 2D Basis Functions 158
 8.1.2 Implementing the Two-Dimensional DFT 158
 8.2 Visualizing the 2D Fourier Transform 162
 8.2.1 Range of Spectral Values 162
 8.2.2 Centered Representation 162
 8.3 Frequencies and Orientation in 2D 164
 8.3.1 Effective Frequency 164
 8.3.2 Frequency Limits and Aliasing in 2D 164
 8.3.3 Orientation .. 165
 8.3.4 Normalizing the 2D Spectrum 166
 8.3.5 Effects of Periodicity 167
 8.3.6 Windowing .. 169
 8.3.7 Windowing Functions 169
 8.4 2D Fourier Transform Examples 171
 8.5 Applications of the DFT 175
 8.5.1 Linear Filter Operations in Frequency Space 175
 8.5.2 Linear Convolution versus Correlation 177
 8.5.3 Inverse Filters .. 178
 8.6 Exercises .. 180

9. The Discrete Cosine Transform (DCT) 183
 9.1 One-Dimensional DCT .. 183
 9.1.1 DCT Basis Functions 184
 9.1.2 Implementing the One-Dimensional DCT 186
 9.2 Two-Dimensional DCT .. 187
 9.2.1 Separability .. 187
 9.2.2 Examples .. 188
 9.3 Other Spectral Transforms 188
 9.4 Exercises .. 190
10. Geometric Operations .. 191
 10.1 2D Mapping Function ... 193
 10.1.1 Simple Mappings .. 193
 10.1.2 Homogeneous Coordinates 194
 10.1.3 Affine (Three-Point) Mapping 195
 10.1.4 Projective (Four-Point) Mapping 197
 10.1.5 Bilinear Mapping ... 203
 10.1.6 Other Nonlinear Image Transformations 204
 10.1.7 Local Image Transformations 207
 10.2 Resampling the Image ... 209
 10.2.1 Source-to-Target Mapping 209
 10.2.2 Target-to-Source Mapping 210
 10.3 Interpolation .. 210
 10.3.1 Simple Interpolation Methods 211
 10.3.2 Ideal Interpolation ... 213
 10.3.3 Interpolation by Convolution 217
 10.3.4 Cubic Interpolation .. 217
 10.3.5 Spline Interpolation ... 219
 10.3.6 Lanczos Interpolation .. 223
 10.3.7 Interpolation in 2D .. 225
 10.3.8 Aliasing .. 234
 10.4 Java Implementation .. 238
 10.4.1 Geometric Transformations 238
 10.4.2 Pixel Interpolation ... 248
 10.4.3 Sample Applications ... 251
 10.5 Exercises .. 253

11. Comparing Images .. 255
 11.1 Template Matching in Intensity Images 257
 11.1.1 Distance between Image Patterns 258
 11.1.2 Implementation ... 266
 11.1.3 Matching under Rotation and Scaling 267
 11.2 Matching Binary Images .. 269
 11.2.1 Direct Comparison ... 269
 11.2.2 The Distance Transform 270
 11.2.3 Chamfer Matching ... 274
 11.3 Exercises .. 278

A. Mathematical Notation ... 279
 A.1 Symbols .. 279
 A.2 Set Operators .. 281
 A.3 Complex Numbers .. 282
Principles of Digital Image Processing
Core Algorithms
Burger, W.; Burge, M.J.
2009, XII, 332 p. With online files/update., Softcover