Regions in Binary Images

In binary images, a pixel can take on exactly one of two values. These values are often thought of as representing the “foreground” and “background” in the image, even though these concepts often are not applicable to natural scenes. In this chapter we focus on connected regions in images and how to isolate and describe such structures.

Let us assume that our task is to devise a procedure for finding the number and type of objects contained in a figure like Fig. 2.1. As long as we continue

![Binary image with nine objects. Each object corresponds to a connected region of related foreground pixels.](image)

Figure 2.1 Binary image with nine objects. Each object corresponds to a connected region of related foreground pixels.
2. Regions in Binary Images

In order to consider each pixel in isolation, we will not be able to determine how many objects there are overall in the image, where they are located, and which pixels belong to which objects. Therefore our first step is to find each object by grouping together all the pixels that belong to it. In the simplest case, an object is a group of touching foreground pixels; that is, a connected binary region.

2.1 Finding Image Regions

In the search for binary regions, the most important tasks are to find out which pixels belong to which regions, how many regions are in the image, and where these regions are located. These steps usually take place as part of a process called region labeling or region coloring. During this process, neighboring pixels are pieced together in a stepwise manner to build regions in which all pixels within that region are assigned a unique number ("label") for identification. In the following sections, we describe two variations on this idea. In the first method, region marking through flood filling, a region is filled in all directions starting from a single point or "seed" within the region. In the second method, sequential region marking, the image is traversed from top to bottom, marking regions as they are encountered. In Sec. 2.2.2, we describe a third method that combines two useful processes, region labeling and contour finding, in a single algorithm.

Independent of which of the methods above we use, we must first settle on either the 4- or 8-connected definition of neighboring (see Vol. 1 [14, Fig. 7.5]) for determining when two pixels are "connected" to each other, since under each definition we can end up with different results. In the following region-marking algorithms, we use the following convention: the original binary image \(I(u, v) \) contains the values 0 and 1 to mark the background and foreground, respectively; any other value is used for numbering (labeling) the regions, i.e., the pixel values are

\[
I(u, v) = \begin{cases}
0 & \text{a background pixel} \\
1 & \text{a foreground pixel} \\
2, 3, \ldots & \text{a region label.}
\end{cases}
\]

2.1.1 Region Labeling with Flood Filling

The underlying algorithm for region marking by flood filling is simple: search for an unmarked foreground pixel and then fill (visit and mark) all the rest of the neighboring pixels in its region (Alg. 2.1). This operation is called a "flood fill" because it is as if a flood of water erupts at the start pixel and flows out across a flat region. There are various methods for carrying out the fill operation that
Algorithm 2.1 Region marking using flood filling (Part 1). The binary input image I uses the value 0 for background pixels and 1 for foreground pixels. Unmarked foreground pixels are searched for, and then the region to which they belong is filled. The actual FloodFill() procedure is described in Alg. 2.2.

1: \textbf{REGIONLABELING}(I)
 I: binary image; $I(u,v) = 0$: background, $I(u,v) = 1$: foreground
 The image I is labeled (destructively modified) and returned.

2: Let $m \leftarrow 2$ \hfill \triangleright value of the next label to be assigned
3: \textbf{for all} image coordinates (u,v) \textbf{do}
4: \hfill \textbf{if} $I(u,v) = 1$ \textbf{then}
5: \hfill \quad \textbf{FLOODFILL}(I,u,v,m) \hfill \triangleright use any version from Alg. 2.2
6: \hfill \quad $m \leftarrow m + 1.$
7: \textbf{return} the labeled image I.

ultimately differ in how to select the coordinates of the next pixel to be visited during the fill. We present three different ways of performing the FloodFill() procedure: a recursive version, an iterative depth-first version, and an iterative breadth-first version (see Alg. 2.2):

(A) **Recursive Flood Filling:** The recursive version (Alg. 2.2, lines 1–8) does not make use of explicit data structures to keep track of the image coordinates but uses the local variables that are implicitly allocated by recursive procedure calls.1 Within each region, a tree structure, rooted at the starting point, is defined by the neighborhood relation between pixels. The recursive step corresponds to a depth-first traversal [20] of this tree and results in very short and elegant program code. Unfortunately, since the maximum depth of the recursion—and thus the size of the required stack memory—is proportional to the size of the region, stack memory is quickly exhausted. Therefore this method is risky and really only practical for very small images.

(B) **Iterative Flood Filling (depth-first):** Every recursive algorithm can also be reformulated as an iterative algorithm (Alg. 2.2, lines 9–20) by implementing and managing its own stacks. In this case, the stack records the “open” (that is, the adjacent but not yet visited) elements. As in the recursive version (A), the corresponding tree of pixels is traversed in depth-first order. By making use of its own dedicated stack (which is created in the much larger heap memory), the depth of the tree is no longer limited.

1 In Java, and similar imperative programming languages such as C and C++, local variables are automatically stored on the call stack at each procedure call and restored from the stack when the procedure returns.
Algorithm 2.2 Region marking using flood filling (Part 2). Three variations of the
FLOODFILL() procedure: recursive, depth-first, and breadth-first.

1: \textproc{FLOODFILL}(I, u, v, label) \hfill \triangleright \text{Recursive Version}
2: \hspace{1em} \textbf{if} \ (u, v) \text{ is inside the image \textbf{and} } I(u, v) = 1 \ \textbf{then}
3: \hspace{2em} \textbf{Set} \ I(u, v) \leftarrow \text{label}
4: \hspace{2em} \textproc{FLOODFILL}(I, u+1, v, label)
5: \hspace{2em} \textproc{FLOODFILL}(I, u, v+1, label)
6: \hspace{2em} \textproc{FLOODFILL}(I, u, v-1, label)
7: \hspace{2em} \textproc{FLOODFILL}(I, u-1, v, label)
8: \hspace{1em} \textbf{return}.

9: \textproc{FLOODFILL}(I, u, v, label) \hfill \triangleright \text{Depth-First Version}
10: \hspace{1em} \textbf{Create an empty stack} \ S
11: \hspace{2em} \textbf{Put the seed coordinate} \ (u, v) \textbf{onto the stack:} \ \text{Push}(S, (u, v))
12: \hspace{1em} \textbf{while} \ S \textbf{is not empty} \ \textbf{do}
13: \hspace{3em} \textbf{Get the next coordinate from the top of the stack:}
14: \hspace{4em} (x, y) \leftarrow \text{Pop}(S)
15: \hspace{3em} \textbf{if} \ (x, y) \textbf{is inside the image \textbf{and} } I(x, y) = 1 \ \textbf{then}
16: \hspace{4em} \textbf{Set} \ I(x, y) \leftarrow \text{label}
17: \hspace{4em} \text{Push}(S, (x+1, y))
18: \hspace{4em} \text{Push}(S, (x, y+1))
19: \hspace{4em} \text{Push}(S, (x, y-1))
20: \hspace{4em} \text{Push}(S, (x-1, y))
21: \hspace{1em} \textbf{return}.

22: \textproc{FLOODFILL}(I, u, v, label) \hfill \triangleright \text{Breadth-First Version}
23: \hspace{1em} \textbf{Create an empty queue} \ Q
24: \hspace{2em} \textbf{Insert the seed coordinate} \ (u, v) \textbf{into the queue:} \ \text{Enqueue}(Q, (u, v))
25: \hspace{1em} \textbf{while} \ Q \textbf{is not empty} \ \textbf{do}
26: \hspace{3em} \textbf{Get the next coordinate from the front of the queue:}
27: \hspace{4em} (x, y) \leftarrow \text{Dequeue}(Q)
28: \hspace{3em} \textbf{if} \ (x, y) \textbf{is inside the image \textbf{and} } I(x, y) = 1 \ \textbf{then}
29: \hspace{4em} \textbf{Set} \ I(x, y) \leftarrow \text{label}
30: \hspace{4em} \text{Enqueue}(Q, (x+1, y))
31: \hspace{4em} \text{Enqueue}(Q, (x, y+1))
32: \hspace{4em} \text{Enqueue}(Q, (x, y-1))
33: \hspace{4em} \text{Enqueue}(Q, (x-1, y))
34: \hspace{1em} \textbf{return}.
to the size of the call stack.

(C) **Iterative Flood Filling (breadth-first):** In this version, pixels are traversed in a way that resembles an expanding wave front propagating out from the starting point (Alg. 2.2, lines 21–32). The data structure used to hold the as yet unvisited pixel coordinates is in this case a *queue* instead of a stack, but otherwise it is identical to version B.

Java implementation

The recursive version (A) of the algorithm corresponds practically 1:1 to its Java implementation. However, a normal Java runtime environment does not support more than about 10,000 recursive calls of the `FLOODFILL()` procedure (Alg. 2.2, line 1) before the memory allocated for the call stack is exhausted. This is only sufficient for relatively small images with fewer than approximately 200 × 200 pixels.

Program 2.1 gives the complete Java implementation for both variants of the iterative `FLOODFILL()` procedure. In implementing the stack (S) in the iterative *depth-first* Version (B), we use the stack data structure provided by the Java class `Stack` (Prog. 2.1, line 1), which serves as a container for generic Java objects. For the queue data structure (Q) in the *breadth-first* variant (C), we use the Java class `LinkedList`\(^2\) with the methods `addFirst()`, `removeLast()`, and `isEmpty()` (Prog. 2.1, line 18). We have specified `<Point>` as a type parameter for both generic container classes so they can only contain objects of type `Point`.\(^3\)

Figure 2.2 illustrates the progress of the region marking in both variants within an example region, where the start point (i.e., seed point), which would normally lie on a contour edge, has been placed arbitrarily within the region in order to better illustrate the process. It is clearly visible that the *depth-first* method first explores one direction (in this case horizontally to the left) completely (that is, until it reaches the edge of the region) and only then examines the remaining directions. In contrast the *breadth-first* method markings proceed outward, layer by layer, equally in all directions.

Due to the way exploration takes place, the memory requirement of the *breadth-first* variant of the *flood-fill* version is generally much lower than that of the *depth-first* variant. For example, when flood filling the region in Fig. 2.2 (using the implementation given Prog. 2.1), the stack in the *depth-first* variant

\(^2\) The class `LinkedList` is a part of the *Java Collection Framework* (see also Vol. 1 [14, Appendix B.2]).

\(^3\) Generic types and templates (i.e., the ability to specify a parameterization for a container) have only been available since Java 5 (1.5).
Depth-first variant (using a stack):

```java
void floodFill(int x, int y, int label) {
    Stack<Point> s = new Stack<Point>(); // stack
    s.push(new Point(x,y));
    while (!s.isEmpty()){
        Point n = s.pop();
        int u = n.x;
        int v = n.y;
        if ((u>=0) && (u<width) && (v>=0) && (v<height) && ip.getPixel(u,v)==1) {
            ip.putPixel(u, v, label);
            s.push(new Point(u+1, v));
            s.push(new Point(u, v+1));
            s.push(new Point(u, v-1));
            s.push(new Point(u-1, v));
        }
    }
}
```

Breadth-first variant (using a queue):

```java
void floodFill(int x, int y, int label) {
    LinkedList<Point> q = new LinkedList<Point>();
    q.addFirst(new Point(x, y));
    while (!q.isEmpty()) {
        Point n = q.removeLast();
        int u = n.x;
        int v = n.y;
        if ((u>=0) && (u<width) && (v>=0) && (v<height) && ip.getPixel(u,v)==1) {
            ip.putPixel(u, v, label);
            q.addFirst(new Point(u+1, v));
            q.addFirst(new Point(u, v+1));
            q.addFirst(new Point(u, v-1));
            q.addFirst(new Point(u-1, v));
        }
    }
}
```

Program 2.1 Flood filling (Java implementation). The standard class `Point` (defined in `java.awt`) represents a single pixel coordinate. The depth-first variant uses the standard stack operations provided by the methods `push()`, `pop()`, and `isEmpty()` of the Java class `Stack`. The breadth-first variant uses the Java class `LinkedList` (with access methods `addFirst()` for `Enqueue()` and `removeLast()` for `Dequeue()`) for implementing the queue data structure.

grows to a maximum of 28,822 elements, while the queue used by the breadth-first variant never exceeds a maximum of 438 nodes.
2.1 Finding Image Regions

2.1.2 Sequential Region Labeling

Sequential region marking is a classical, nonrecursive technique that is known in the literature as “region labeling”. The algorithm consists of two steps: (1) a preliminary labeling of the image regions and (2) resolving cases where more
than one label occurs (i.e., has been assigned in the previous step) in the same connected region. Even though this algorithm is relatively complex, especially its second stage, its moderate memory requirements make it a good choice under limited memory conditions. However, this is not a major issue on modern computers and thus, in terms of overall efficiency, sequential labeling offers no clear advantage over the simpler methods described earlier. The sequential technique is nevertheless interesting (not only from a historic perspective) and inspiring. The complete process is summarized in Alg. 2.3–2.4, with the following main steps:

Step 1: Initial labeling

In the first stage of region labeling, the image is traversed from top left to bottom right sequentially to assign a preliminary label to every foreground pixel. Depending on the definition of neighborhood (either 4- or 8-connected) used, the following neighbors in the direct vicinity of each pixel must be examined (× marks the current pixel at the position \((u, v)\)):

\[
\mathcal{N}_4(u, v) = N_1 \times N_2 \quad \text{or} \quad \mathcal{N}_8(u, v) = N_1 \times N_2 N_3 N_4
\]

When using the 4-connected neighborhood \(\mathcal{N}_4\), only the two neighbors \(N_1 = I(u-1, v)\) and \(N_2 = I(u, v-1)\) need to be considered, but when using the 8-connected neighborhood \(\mathcal{N}_8\), all four neighbors \(N_1 \ldots N_4\) must be examined.

Example

In the following example (Figs. 2.3–2.5), we use an 8-connected neighborhood and a very simple test image (Fig. 2.3 (a)) to demonstrate the sequential region labeling process.

Propagating labels. Again we assume that, in the image, the value \(I(u, v) = 0\) represents background pixels and the value \(I(u, v) = 1\) represents foreground pixels. We will also consider neighboring pixels that lie outside of the image matrix (e.g., on the array borders) to be part of the background. The neighborhood region \(\mathcal{N}(u, v)\) is slid over the image horizontally and then vertically, starting from the top left corner. When the current image element \(I(u, v)\) is a foreground pixel, it is either assigned a new region number or, in the case where one of its previously examined neighbors in \(\mathcal{N}(u, v)\) was a foreground pixel, it takes on the region number of the neighbor. In this way, existing region numbers propagate in the image from the left to the right and from the top to the bottom, as shown in (Fig. 2.3 (b, c)).
2.1 Finding Image Regions

Sequential region labeling—label propagation. Original image (a). The first foreground pixel (marked 1) is found in (b): all neighbors are background pixels (marked 0), and the pixel is assigned the first label (2). In the next step (c), there is exactly one neighbor pixel marked with the label 2, so this value is propagated. In (d) there are two neighboring pixels, and they have differing labels (2 and 5); one of these values is propagated, and the collision (2, 5) is registered.

Figure 2.3 Sequential region labeling—label propagation. Original image (a). The first foreground pixel (marked 1) is found in (b): all neighbors are background pixels (marked 0), and the pixel is assigned the first label (2). In the next step (c), there is exactly one neighbor pixel marked with the label 2, so this value is propagated. In (d) there are two neighboring pixels, and they have differing labels (2 and 5); one of these values is propagated, and the collision (2, 5) is registered.
Algorithm 2.3 Sequential region labeling (Part 1). The binary input image I contains the values $I(u, v) = 0$ for background pixels and $I(u, v) = 1$ for foreground (region) pixels. The resulting region labels in I have the values $2 \ldots m - 1$.

1: \textbf{SEQUENTIALLABELING}(I)
 \begin{itemize}
 \item I: binary image; $I(u, v) = 0$: background, $I(u, v) = 1$: foreground
 \item The image I is labeled (destructively modified) and returned.
 \item m: number of assigned labels; C: set of label collisions.
 \end{itemize}

2: \textbf{AssignInitialLabels}(I) \\
3: $\mathcal{R} \leftarrow$ \textbf{RELABELCOLLISIONS}(m, C) \hspace{1cm} \triangleright \text{ see Alg. 2.4}
4: \textbf{RelabelImage}(I, \mathcal{R}) \hspace{1cm} \triangleright \text{ see Alg. 2.4}
5: \textbf{return} I.

6: \textbf{AssignInitialLabels}(I) \\
 Performs a preliminary labeling on image I (which is modified).
 Returns the number of assigned labels (m) and
 the set of detected label collisions (C).

7: Initialize $m \leftarrow 2$ (the value of the next label to be assigned).
8: $C \leftarrow \{\}$ \hspace{1cm} \triangleright \text{ empty set of collisions}
9: \textbf{for} $v \leftarrow 0 \ldots H - 1$ \hspace{1cm} \triangleright \text{ $H =$ height of image } I
10: \textbf{for} $u \leftarrow 0 \ldots W - 1$ \hspace{1cm} \triangleright \text{ $W =$ width of image } I
11: \hspace{1cm} \textbf{if} $I(u, v) = 1$ \textbf{then} do one of:
12: \hspace{1cm} \hspace{1cm} \textbf{if} all neighbors of (u, v) are background pixels (all $n_i = 0$) \textbf{then}
13: \hspace{1cm} \hspace{1cm} $I(u, v) \leftarrow m$
14: \hspace{1cm} \hspace{1cm} $m \leftarrow m + 1$
15: \hspace{1cm} \hspace{1cm} \textbf{else if} exactly one of the neighbors has a label value $n_k > 1$ \textbf{then}
16: \hspace{1cm} \hspace{1cm} set $I(u, v) \leftarrow n_k$
17: \hspace{1cm} \hspace{1cm} \textbf{else if} several neighbors of (u, v) have label values $n_j > 1$ \textbf{then}
18: \hspace{1cm} \hspace{1cm} Select one of them as the new label:
19: \hspace{1cm} \hspace{1cm} $I(u, v) \leftarrow k \in \{n_j\}$.
20: \hspace{1cm} \hspace{1cm} \textbf{for all} other neighbors of (u, v) with label values $n_i > 1$
21: \hspace{1cm} \hspace{1cm} and $n_i \neq k$ \textbf{do}
22: \hspace{1cm} \hspace{1cm} \hspace{1cm} Create a new label collision: $c_i = \langle n_i, k \rangle$.
23: \hspace{1cm} \hspace{1cm} \textbf{Record} the collision: $C \leftarrow C \cup \{c_i\}$

\textbf{Remark:} The image I now contains label values $0, 2, \ldots m - 1$.

22: \textbf{return} (m, C).

continued in Alg. 2.4 \triangleright \triangleright
Algorithm 2.4 Sequential region labeling (Part 2).

1. **RESOLVEMICOLLISIONS**(m, C)

 Resolves the label collisions contained in the set C.

 Returns R, a vector of sets that represents a partitioning of the complete label set into equivalent labels.

2. Let $\mathcal{L} = \{2, 3, \ldots, m - 1\}$ be the set of preliminary region labels.

3. Create a partitioning of \mathcal{L} as a vector of sets, one set for each label value:

 $$R \leftarrow [R_2, R_3, \ldots, R_{m-1}] = [\{2\}, \{3\}, \{4\}, \ldots, \{m - 1\}],$$

 so $R_i = \{i\}$ for all $i \in \mathcal{L}$.

4. **for all** collisions $\langle a, b \rangle \in C$ **do**

5. Find in R the sets R_a, R_b:

 $R_a \leftarrow$ the set that currently contains label a

 $R_b \leftarrow$ the set that currently contains label b

6. **if** $R_a \neq R_b$ (a and b are contained in different sets) **then**

7. Merge sets R_a and R_b by moving all elements of R_b to R_a:

 $R_a \leftarrow R_a \cup R_b$, $R_b \leftarrow \{}$

 Remark: All equivalent label values (i.e., all labels of pixels in the same region) are now contained in the same set R_i within R.

8. **return** R.

9. **RELABEILAND**(I, R)

 Relabels the image I using the label partitioning in R.

 The image I is modified.

10. **for all** image locations (u, v) **do**

11. **if** $I(u, v) > 1$ **then** $\triangleright I(u, v)$ contains a region label

12. Find the set R_i in R that contains the label $I(u, v)$

13. Choose one unique representative element k from the set R_i, e.g., the minimum value:

 $$k = \min(R_i)$$

14. Replace the image label:

 $$I(u, v) \leftarrow k$$

15. **return**.

Label collisions. In the case where two or more neighbors have labels belonging to different regions, then a label collision has occurred; that is, pixels within a single connected region have different labels. For example, in a U-shaped region, the pixels in the left and right arms are at first assigned different labels.
since it is not immediately apparent that they are actually part of a single region. The two labels will propagate down independently from each other until they eventually collide in the lower part of the "U" (Fig. 2.3 (d)).

When two labels \(a, b\) collide, then we know that they are actually "equivalent"; i.e., they are contained in the same image region. These collisions are registered but otherwise not dealt with during the first step. Once all collisions have been registered, they are then resolved in the second step of the algorithm. The number of collisions depends on the content of the image. There can be only a few or very many collisions, and the exact number is only known at the end of the first step, once the whole image has been traversed. For this reason, collision management must make use of dynamic data structures such as lists or hash tables. Upon the completion of the first steps, all the original foreground pixels have been provisionally marked, and all the collisions between labels within the same regions have been registered for subsequent processing.

The example in Fig. 2.4 illustrates the state upon completion of step 1: all foreground pixels have been assigned preliminary labels (Fig. 2.4 (a)), and the following collisions (depicted by circles) between the labels (2, 4), (2, 5), and (2, 6) have been registered. The labels \(\mathcal{L} = \{2, 3, 4, 5, 6, 7\}\) and collisions \(\mathcal{C} = \{(2, 4), (2, 5), (2, 6)\}\) correspond to the nodes and edges of an undirected graph (Fig. 2.4 (b)).

Step 2: Resolving collisions

The task in the second step is to resolve the label collisions that arose in the first step in order to merge the corresponding "partial" regions. This process is nontrivial since it is possible for two regions with different labels to be connected transitively (e.g., \((a, b) \cap (b, c) \Rightarrow (a, c)\) through a third region or, more generally, through a series of regions. In fact, this problem is identical to the problem of finding the connected components of a graph [20], where the labels \(\mathcal{L}\) determined in Step 1 constitute the "nodes" of the graph and the registered
collisions C make up its “edges” (Fig. 2.4 (b)).

Step 3: Relabeling the image

Once all the distinct labels within a single region have been collected, the labels of all the pixels in the region are updated so they carry the same label (for example, choosing the smallest label number in the region), as shown in Fig. 2.5.

![Image showing sequential region labeling](image)

Figure 2.5 Sequential region labeling—final result after Step 3. All equivalent labels have been replaced by the smallest label within that region.

2.1.3 Region Labeling—Summary

In this section, we described a selection of algorithms for finding and labeling connected regions in images. We discovered that the elegant idea of labeling individual regions using a simple recursive flood-filling method (Sec. 2.1.1) was not useful because of practical limitations on the depth of recursion and the high memory costs associated with it. We also saw that classical sequential region labeling (Sec. 2.1.2) is relatively complex and offers no real advantage over iterative implementations of the depth-first and breadth-first methods. In practice, the iterative breadth-first method is generally the best choice for large and complex images.

2.2 Region Contours

Once the regions in a binary image have been found, the next step is often to find the contours (that is, the outlines) of the regions. Like so many other tasks in image processing, at first glance this appears to be an easy one: simply follow along the edge of the region. We will see that, in actuality, describing this apparently simple process algorithmically requires careful thought, which has made contour finding one of the classic problems in image analysis.
2. Regions in Binary Images

<table>
<thead>
<tr>
<th>Label</th>
<th>Area (pixels)</th>
<th>Bounding Box (left, top, right, bottom)</th>
<th>Center (x_c,y_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14978</td>
<td>(887, 21, 1144, 399)</td>
<td>(1049.7, 242.8)</td>
</tr>
<tr>
<td>3</td>
<td>36156</td>
<td>(40, 37, 438, 419)</td>
<td>(261.9, 209.5)</td>
</tr>
<tr>
<td>4</td>
<td>25904</td>
<td>(464, 126, 841, 382)</td>
<td>(680.6, 240.6)</td>
</tr>
<tr>
<td>5</td>
<td>2024</td>
<td>(387, 281, 442, 341)</td>
<td>(414.2, 310.6)</td>
</tr>
<tr>
<td>6</td>
<td>2293</td>
<td>(244, 367, 342, 506)</td>
<td>(294.4, 439.0)</td>
</tr>
<tr>
<td>7</td>
<td>4394</td>
<td>(406, 400, 507, 512)</td>
<td>(454.1, 457.3)</td>
</tr>
<tr>
<td>8</td>
<td>29777</td>
<td>(510, 416, 883, 765)</td>
<td>(704.9, 583.9)</td>
</tr>
<tr>
<td>9</td>
<td>20724</td>
<td>(833, 497, 1168, 759)</td>
<td>(1016.0, 624.1)</td>
</tr>
<tr>
<td>10</td>
<td>16566</td>
<td>(82, 558, 411, 821)</td>
<td>(208.7, 661.6)</td>
</tr>
</tbody>
</table>

Figure 2.6 Example of a complete region labeling. The pixels within each region have been colored according to the consecutive label values 2, 3, ..., 10 they were assigned. The corresponding region statistics are shown in the table below (total image size is 1212×836).

2.2.1 External and Internal Contours

As we discussed in Vol. 1 [14, Sec. 7.2.7], the pixels along the edge of a binary region (that is, its border) can be identified using simple morphological operations and difference images. It must be stressed, however, that this process only marks the pixels along the contour, which is useful, for instance, for display purposes. In this section, we will go one step further and develop an algorithm for obtaining an ordered sequence of border pixel coordinates for describing a region’s contour.

Note that connected image regions contain exactly one outer contour, yet, due to holes, they can contain arbitrarily many inner contours. Within such
holes, smaller regions may be found, which will again have their own outer contours, and in turn these regions may themselves contain further holes with even smaller regions, and so on in a recursive manner (Fig. 2.7).

An additional complication arises when regions are connected by parts that taper down to the width of a single pixel. In such cases, the contour can run through the same pixel more than once and from different directions (Fig. 2.8). Therefore, when tracing a contour from a start point \(x_S \), returning to the start point is not a sufficient condition for terminating the contour tracing process. Other factors, such as the current direction along which contour points are being traversed, must be taken into account.

One apparently simple way of determining a contour is to proceed in analogy to the two-stage process presented in the previous section (2.1); that is, to first identify the connected regions in the image and second, for each region, proceed around it, starting from a pixel selected from its border. In the same way, an internal contour can be found by starting at a border pixel of a region’s hole. A wide range of algorithms based on first finding the regions and then following along their contours have been published, including [61], [57, pp. 142–148], and [65, p. 296]. However, while the idea of contour tracing is simple in essence, the implementation requires careful record-keeping and is complicated by special cases such as the single-pixel bridges described in the previous section.

As a modern alternative, we present the following combined algorithm that, in contrast to the classical methods above, combines contour finding and region labeling in a single process.
2.2.2 Combining Region Labeling and Contour Finding

This method, based on [18], combines the concepts of sequential region labeling (Sec. 2.1) and traditional contour tracing into a single algorithm able to perform both tasks simultaneously during a single pass through the image. It identifies and labels regions and at the same time traces both their inner and outer contours. The algorithm does not require any complicated data structures and is very efficient when compared with other methods with similar capabilities. The key steps of this method are described below and illustrated in Fig. 2.9:

1. As in the sequential region labeling (Alg. 2.3), the binary image I is traversed from the top left to the bottom right. Such a traversal ensures that all pixels in the image are eventually examined and assigned an appropriate label.

2. At a given position in the image, the following cases may occur:

 Case A: The transition from a foreground pixel to a previously unmarked foreground pixel (A in Fig. 2.9 (a)) means that this pixel lies on the outer edge of a new region. A new label is assigned and the associated outer contour is traversed and marked by calling the method `TraceContour()` (see Fig. 2.9 (a) and Alg. 2.5 (line 19)). Furthermore, all background pixels directly bordering the region are marked with the special label -1.

 Case B: The transition from a foreground pixel (B in Fig. 2.9 (b)) to an
unmarked background pixel means that this pixel lies on an inner contour. Starting from B, the inner contour is traversed and its pixels are marked with labels from the surrounding region (Fig. 2.9(c)). Also, all bordering background pixels are again assigned the special label value -1.

Case C: When a foreground pixel does not lie on a contour, then the neighboring pixel to the left has already been labeled (Fig. 2.9(d)) and this label is propagated to the current pixel.
In Algorithms 2.5 and 2.6, the entire procedure is presented again and explained precisely. The method `CombinedContourLabeling()` traverses the image line-by-line and calls the method `TraceContour()` whenever a new inner or outer contour must be traced. The labels of the image elements along the contour, as well as the neighboring foreground pixels, are stored in the "label map" L (a rectangular array of the same size as the image) by the method `FindNextPoint()` in Alg. 2.6.

2.2.3 Implementation

While the main idea of the algorithm can be sketched out in a few simple steps, the actual implementation requires attention to a number of details, so we have provided the complete Java source for an ImageJ plugin implementation in Appendix B (pp. 283–293). The implementation closely follows the description in Algs. 2.5 and 2.6 but illustrates several additional details:

- The task is performed by methods of the class `ContourTracer`. First the image I (pixelArray) and the associated label map L (labelArray) are enlarged by padding one layer of elements around their borders. The new pixels are marked as `background` (0) in the image I. This simplifies contour following and eliminates the need to handle a number of special situations.

- As contours are found they are turned into objects of class `Contour` and collected in two separate lists: `outerContours` and `innerContours`. Every contour consists of an ordered sequence of coordinate points of the standard class `Point` (defined in `java.awt`). The Java container class `ArrayList` (templated on the type `Point`) is used as a dynamic data structure for storing the point sequences of the outer and inner contours.

- The method `traceContour()` (see p. 289) traverses an outer or inner contour, beginning from the starting point x_S (x_S, y_S). It calls the method `findNextPoint()`, to determine the next contour point x_T (x_T, y_T) following x_S:

 - In the case that no following point is found, then $x_S = x_T$ and the region (contour) consists of a single isolated pixel. The method `traceContour()` is finished.

 - In the other case the remaining contour points are found by repeatedly calling `findNextPoint()`, and for every successive pair of points the current point x_c (x_C, y_C) and the previous point x_p (x_P, y_P) are recorded. Only when both points correspond to the original starting

4 In the following description the names in parentheses after the algorithmic symbols denote the corresponding identifiers used in the Java implementation.
Algorithm 2.5 Combined contour tracing and region labeling (Part 1). Given a binary image \(I \), the method \textsc{CombinedContourLabeling()} returns a set of contours and an array containing region labels for all pixels in the image. When a new point on either an outer or inner contour is found, then an ordered list of the contour’s points is constructed by calling the method \textsc{TraceContour()} (line 19 and line 26). \textsc{TraceContour()} itself is described in Alg. 2.6.

```
1: \textsc{CombinedContourLabeling} (I)
   \hspace{1em} I: \text{binary image.}
   \hspace{1em} \text{Returns the sets of outer and inner contours and a label map.}

2: \hspace{1em} \text{Create two empty sets of contours } C_{\text{outer}} \leftarrow \{\}, \quad C_{\text{inner}} \leftarrow \{\} \quad \triangleright \text{create two empty sets of contours}
3: \hspace{1em} \text{Create a label map } L \text{ of the same size as } I \text{ and initialize:}
4: \hspace{1em} \text{for all image locations } (u, v) \text{ do}
5: \hspace{2em} L(u, v) \leftarrow 0 \quad \triangleright \text{label map } L
6: \hspace{2em} R \leftarrow 0 \quad \triangleright \text{region counter } R

7: \hspace{1em} \text{Scan the image from left to right and top to bottom:}
8: \hspace{2em} \text{for } v \leftarrow 0 \ldots N-1 \text{ do}
9: \hspace{3em} \text{set the current label } l \text{ to “none”}
10: \hspace{3em} \text{for } u \leftarrow 0 \ldots M-1 \text{ do}
11: \hspace{4em} \text{if } I(u, v) \text{ is a foreground pixel then}
12: \hspace{5em} \text{if } (l \neq 0) \text{ then} \quad \triangleright \text{continue inside region}
13: \hspace{6em} L(u, v) \leftarrow l
14: \hspace{5em} \text{else}
15: \hspace{6em} l \leftarrow L(u, v)
16: \hspace{6em} \text{if } (l = 0) \text{ then} \quad \triangleright \text{hit a new outer contour}
17: \hspace{7em} R \leftarrow R + 1
18: \hspace{7em} l \leftarrow R
19: \hspace{7em} x_S \leftarrow (u, v)
20: \hspace{7em} c \leftarrow \textsc{TraceContour}(x_S, 0, l, I, L) \quad \triangleright \text{collect outer contour}
21: \hspace{7em} C_{\text{outer}} \leftarrow C_{\text{outer}} \cup \{c\}
22: \hspace{6em} L(u, v) \leftarrow l
23: \hspace{5em} \text{else} \quad \triangleright \text{I}(u, v) \text{ is a background pixel}
24: \hspace{6em} \text{if } (l \neq 0) \text{ then}
25: \hspace{7em} \text{if } (L(u, v) = 0) \text{ then} \quad \triangleright \text{hit new inner contour}
26: \hspace{8em} x_S \leftarrow (u-1, v)
27: \hspace{8em} c \leftarrow \textsc{TraceContour}(x_S, 1, l, I, L) \quad \triangleright \text{collect inner contour}
28: \hspace{8em} C_{\text{inner}} \leftarrow C_{\text{inner}} \cup \{c\}
29: \hspace{7em} l \leftarrow 0
30: \hspace{5em} \text{return } (C_{\text{outer}}, C_{\text{inner}}, L). \quad \triangleright \text{return the contour sets and label map}
```

continued in Alg. 2.6 \(\triangleright\triangleright\)
Algorithm 2.6 Combined contour finding and region labeling (Part 2, continued from Alg. 2.5). Starting from \(x_S \), the procedure TraceContour traces along the contour in the direction \(d_S = 0 \) for outer contours or \(d_S = 1 \) for inner contours. During this process, all contour points as well as neighboring background points are marked in the label array \(L \). Given a point \(x_c \), TraceContour uses FindNextPoint() to determine the next point along the contour (line 10). The function Delta() returns the next coordinate in the sequence, taking into account the search direction \(d \).

\[
\begin{align*}
1: & & \text{TraceContour}(x_S, d_S, l, I, L) & & \text{Traces and returns the contour starting at } x_S. \\
& & x_S: \text{start position}, & & \text{done } \leftarrow (x_S \equiv x_T) \quad \text{isolated pixel?} \\
& & d_S: \text{initial search direction } (0 \text{ for outer}, 1 \text{ for inner contours}), & & \text{back at start point?} \\
& & l: \text{label for this contour}, & & \text{return this contour} \\
& & I: \text{original image}, & & \text{return this contour} \\
& & L: \text{label map}. & & \text{return this contour} \\
2: & & (x_T, d_{next}) \leftarrow \text{FindNextPoint}(x_S, d_S, I, L) & & \text{create a contour starting with } x_T \\
3: & & c \leftarrow [x_T] & & \text{previous position } x_p = (u_p, v_p) \\
4: & & x_p \leftarrow x_S & & \text{current position } x_c = (u_c, v_c) \\
5: & & x_c \leftarrow x_T & & \text{isolated pixel?} \\
6: & & \text{while } \neg \text{done do} & & \text{add point } x_n \text{ to contour } c \\
& & \text{done } \leftarrow (x_p \equiv x_S \land x_c \equiv x_T) & & \text{return this contour} \\
& & \text{if } \neg \text{done then} & & \text{return start point} \\
15: & & \text{Append}(c, x_n) & & \text{found no next point, return start point} \\
16: & & \text{return } c. & & \text{found no next point, return start point} \\
17: & & \text{FindNextPoint}(x_c, d, I, L) & & \text{found no next point, return start point} \\
& & x_c: \text{start point}, & & \text{search in 7 directions} \\
& & d: \text{search direction}, & & \text{search in 7 directions} \\
& & I: \text{original image}, & & \text{search in 7 directions} \\
& & L: \text{label map}. & & \text{search in 7 directions} \\
18: & & \text{for } i \leftarrow 0 \ldots 6 \text{ do} & & \text{search in 7 directions} \\
19: & & x' \leftarrow x_c + \text{Delta}(d) & & \text{search in 7 directions} \\
20: & & \text{if } I(u', v') \text{ is a background pixel then} & & \text{search in 7 directions} \\
21: & & \text{d } \leftarrow (d + 1) \text{ mod } 8 & & \text{search in 7 directions} \\
22: & & \text{else} & & \text{search in 7 directions} \\
23: & & \text{return } (x', d) & & \text{search in 7 directions} \\
24: & & \text{return } (x_c, d). & & \text{search in 7 directions} \\
25: & & \text{Delta}(d) = (\Delta x, \Delta y), & & \text{search in 7 directions} \\
26: & & \text{with} & & \text{search in 7 directions} \\
& & \begin{array}{cccccccc}
& & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\Delta x & 1 & 1 & 0 & -1 & -1 & 0 & 1 \\
\Delta y & 0 & 1 & 1 & 1 & 0 & -1 & -1 & -1
\end{array} & & \text{search in 7 directions} \\
\end{align*}
\]
import java.util.List;

public class Trace_Contours implements PlugInFilter {
 public void run(ImageProcessor ip) {
 ContourTracer tracer = new ContourTracer(ip);
 // extract contours and regions
 List<Contour> outerContours = tracer.getOuterContours();
 List<Contour> innerContours = tracer.getInnerContours();
 List<BinaryRegion> regions = tracer.getRegions();
 }
}

Program 2.2 Example of using the class ContourTracer. See Appendix B.1 for a listing of the complete implementation.

points on the contour, \(x_p = x_S \) and \(x_c = x_T \), we know that the contour has been completely traversed.

- The method `findNextPoint()` (see p. 290) determines which point on the contour follows the current point \(x_c (x_C, y_C) \) by searching in the direction \(d (d_{ir}) \), depending upon the position of the previous contour point. Starting in the first search direction, up to seven neighboring pixels (all neighbors except the previous contour point) are searched in clockwise direction until the next contour point is found. At the same time, all background pixels in the label map \(L (l_{abelArray}) \) are marked with the value \(-1\) to prevent them from being searched again. If no valid contour point is found among the seven possible neighbors, then `findNextPoint()` returns the original point \(x_c (x_C, y_C) \).

In this implementation the core of the algorithm is contained in the class ContourTracer (pp. 287–292). Program 2.2 provides an example of its usage within the `run()` method of an ImageJ plugin. An interesting detail is the class ContourOverlay (pp. 292–293) that is used to display the resulting contours by a vector graphics overlay. In this way graphic structures that are smaller and thinner than image pixels can be visualized on top of ImageJ’s raster images at arbitrary magnification (zooming).

2.2.4 Example

This combined algorithm for region marking and contour following is particularly well suited for processing large binary images since it is efficient and has only modest memory requirements. Figure 2.10 shows a synthetic test image that illustrates a number of special situations, such as isolated pixels and thin sections, which the algorithm must deal with correctly when following the contours. In the resulting plot, outer contours are shown as black polygon lines.
2. Regions in Binary Images

Figure 2.10 Combined contour and region marking: original image in gray (a), located contours (b) with black lines for out and white lines for inner contours. The contour consisting of single isolated pixels (for example, in the upper-right of (b)) are marked by a single circle in the appropriate color.

running trough the centers of the contour pixels, and inner contours are drawn white. Contours of single-pixel regions are marked by small circles filled with the corresponding color. Figure 2.11 shows the results for a larger section taken from a real image (Vol. 1 [14, Fig. 7.12]).

2.3 Representing Image Regions

2.3.1 Matrix Representation

A natural representation for images is a matrix (that is, a two-dimensional array) in which elements represent the intensity or the color at a corresponding position in the image. This representation lends itself, in most programming languages, to a simple and elegant mapping onto two-dimensional arrays, which makes possible a very natural way to work with raster images. One possible disadvantage with this representation is that it does not depend on the content of the image. In other words, it makes no difference whether the image contains only a pair of lines or is of a complex scene because the amount of memory required is constant and depends only on the dimensions of the image.

Regions in an image can be represented using a logical mask in which the area within the region is assigned the value true and the area without the value false (Fig. 2.12). Since Boolean values can be represented by a single bit, such
2.3 Representing Image Regions

2.3.2 Run Length Encoding

In *run length encoding* (RLE), sequences of adjacent foreground pixels can be represented compactly as “runs”. A run, or contiguous block, is a maximal length sequence of adjacent pixels of the same type within either a row or a column. Runs of arbitrary length can be encoded compactly using three integers,

\[\text{Run}_i = \langle \text{row}_i, \text{column}_i, \text{length}_i \rangle, \]

In Java, variables of the type `boolean` are represented internally within the Java virtual machine (JVM) as 32-bit `int`s. There is currently no direct way to implement genuine bitmaps in Java.

Figure 2.11 Example of a complex contour (in a section cut from Fig. 7.12 in Vol. 1 [14]). Outer contours are marked in black and inner contours in white.

a matrix is often referred to as a “bitmap”.\(^5\)

\(^5\) In Java, variables of the type `boolean` are represented internally within the Java virtual machine (JVM) as 32-bit `int`s. There is currently no direct way to implement genuine bitmaps in Java.
Figure 2.12 Use of a binary mask to specify a region of an image: original image (a), logical (bit) mask (b), and masked image (c).

Figure 2.13 Run length encoding in row direction. A run of pixels can be represented by its starting point \((1, 2)\) and its length (6).

two to represent the starting pixel \((\text{row}, \text{column})\) and a third for the length of the run as illustrated in Fig. 2.13. When representing a sequence of runs within the same row, the number of the row is redundant and can be left out. Also, in some applications, it is more useful to record the coordinate of the end column instead of the length of the run.

Since the RLE representation can be easily implemented and efficiently computed, it has long been used as a simple lossless compression method. It forms the foundation for fax transmission and can be found in a number of other important codecs, including TIFF, GIF, and JPEG. In addition, RLE provides precomputed information about the image that can be used directly when computing certain properties of the image (for example, statistical moments; see Sec. 2.4.3).

2.3.3 Chain Codes

Regions can be represented not only using their interiors but also by their contours. Chain codes, which are often referred to as Freeman codes [25], are a classical method of contour encoding. In this encoding, the contour beginning
at a given start point x_S is represented by the sequence of directional changes it describes on the discrete image raster (Fig. 2.14).

Absolute chain code

For a closed contour of a region R, described by the sequence of points $c_R = [x_0, x_1, \ldots, x_{M-1}]$ with $x_i = (u_i, v_i)$, we create the elements of its chain code sequence $c'_R = [c'_0, c'_1, \ldots, c'_{M-1}]$ by

$$c'_i = \text{Code}(\Delta u_i, \Delta v_i),$$

where

$$\Delta u_i, \Delta v_i = \begin{cases} (u_{i+1} - u_i, v_{i+1} - v_i) & \text{for } 0 \leq i < M-1 \\ (u_0 - u_i, v_0 - v_i) & \text{for } i = M-1, \end{cases}$$

and $\text{CODE}(\Delta u, \Delta v)$ being defined by the following table:

<table>
<thead>
<tr>
<th>Δu</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Δv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>CODE</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

6 Assuming an 8-connected neighborhood.
Chain codes are compact since instead of storing the absolute coordinates for every point on the contour, only that of the starting point is recorded. The remaining points are encoded relative to the starting point by indicating in which of the eight possible directions the next point lies. Since only 3 bits are required to encode these eight directions the values can be stored using a smaller numeric type.

Differential chain code

Directly comparing two regions represented using chain codes is difficult since the description depends on the starting point selected \(x_S \), and for instance simply rotating the region by 90° results in a completely different chain code. When using a differential chain code, the situation improves slightly. Instead of encoding the difference in the position of the next contour point, the change in the direction along the discrete contour is encoded. A given absolute chain code \(c'_R = [c'_0, c'_1, \ldots, c'_{M-1}] \) can be converted element by element to a differential chain code \(c''_R = [c''_0, c''_1, \ldots, c''_{M-1}] \), with

\[
 c''_i = \begin{cases}
 (c'_{i+1} - c'_i) \mod 8 & \text{for } 0 \leq i < M-1 \\
 (c'_0 - c'_i) \mod 8 & \text{for } i = M-1,
 \end{cases}
\]

(2.2)

again under the assumption of an 8-connected neighborhood.\(^7\) The element \(c''_i \) thus describes the change in direction (curvature) of the contour between two successive segments \(c'_i \) and \(c'_{i+1} \) of the original chain code \(c'_R \). For the contour in Fig. 2.14 (b), the results are

\[
 c'_R = [5, 4, 5, 4, 4, 5, 4, 6, 7, 6, 7, \ldots, 2, 2, 2],
 c''_R = [7, 1, 7, 0, 1, 7, 2, 1, 7, 1, 1, \ldots, 0, 0, 3].
\]

Given the starting point \(x_S \) and the (absolute) initial direction \(c_0 \), the original contour can be unambiguously reconstructed from the differential chain code.

Shape numbers

While the differential chain code remains the same when a region is rotated by 90°, the encoding is still dependent on the selected starting point. If we want to determine the similarity of two contours of the same length \(M \) using their differential chain codes \(c''_1, c''_2 \), we must first ensure that the same start point was used when computing the codes. A method that is often used \([2, 28]\) is to interpret the elements \(c''_i \) in the differential chain code as the digits of

\(^7\) See Vol. 1 [14, Appendix B.1.2] for implementing the mod operator used in Eqn. (2.2).
a number to the base b ($b = 8$ for an 8-connected contour or $b = 4$ for a 4-connected contour) and the numeric value

$$
\text{VAL}(c''_R) = c''_0 \cdot b^0 + c''_1 \cdot b^1 + \ldots + c''_{M-1} \cdot b^{M-1}
$$

$$
= \sum_{i=0}^{M-1} c''_i \cdot b^i. \tag{2.3}
$$

Then the sequence c''_R is shifted cyclically until the numeric value of the corresponding number reaches a maximum. We use the expression $c''_R \triangleright k$ to denote the sequence c''_R being cyclically shifted by k positions to the right,\(^8\) such as (for $k = 2$)

$$
c''_R = [0, 1, 3, 2, \ldots 9, 3, 7, 4]
$$

$$
c''_R \triangleright 2 = [7, 4, 0, 1, 3, 2, \ldots 9, 3]
$$

and

$$
k_{\text{max}} = \arg \max_{0 \leq k < M} \text{VAL}(c''_R \triangleright k) \tag{2.4}
$$

to denote the shift required to maximize the corresponding arithmetic value.

The resulting code sequence or \textit{shape number},

$$
s_R = c''_R \triangleright k_{\text{max}}, \tag{2.5}
$$

is \textit{normalized} with respect to the starting point and can thus be directly compared element by element with other normalized code sequences. Since the function $\text{VAL}()$ in Eqn. (2.3) produces values that are in general too large to be actually computed, in practice the relation

$$
\text{VAL}(c''_1) > \text{VAL}(c''_2)
$$

is determined by comparing the \textit{lexicographic ordering} between the sequences c''_1 and c''_2 so that the arithmetic values need not be computed at all.

Unfortunately, comparisons based on chain codes are generally not very useful for determining the similarity between regions simply because rotations at arbitrary angles ($\neq 90^\circ$) have too great of an impact (change) on a region’s code. In addition, chain codes are not capable of handling changes in size (scaling) or other distortions. Section 2.4 presents a number of tools that are more appropriate in these types of cases.

\[^8\](c''_R \triangleright k)[i] = c''_R[(i - k) \mod M].
Fourier descriptors

An elegant approach to describing contours are so-called Fourier descriptors, which interpret the two-dimensional contour \(c_R = [x_0, x_1, \ldots, x_{M-1}] \) with \(x_i = (u_i, v_i) \) as a sequence of values \([z_0, z_1, \ldots, z_{M-1}]\) in the complex plane, where

\[z_i = (u_i + i \cdot v_i) \in \mathbb{C}. \]

From this sequence, one obtains (using a suitable method of interpolation in case of an 8-connected contour), a discrete, one-dimensional periodic function \(f(s) \in \mathbb{C} \) with a constant sampling interval over \(s \), the path length around the contour. The coefficients of the one-dimensional Fourier spectrum (see Sec. 7.3) of this function \(f(s) \) provide a shape description of the contour in frequency space, where the lower spectral coefficients deliver a gross description of the shape. The details of this classical method can be found for example in [28, 30, 46, 47, 69].

2.4 Properties of Binary Regions

Imagine that you have to describe the contents of a digital image to another person over the telephone. One possibility would be to call out the value of each pixel in some agreed upon order. A much simpler way of course would be to describe the image on the basis of its properties—for example, “a red rectangle on a blue background”, or at an even higher level such as “a sunset at the beach with two dogs playing in the sand”. While using such a description is simple and natural for us, it is not (yet) possible for a computer to generate these types of descriptions without human intervention. For computers, it is of course simpler to calculate the mathematical properties of an image or region and to use these as the basis for further classification. Using features to classify, be they images or other items, is a fundamental part of the field of pattern recognition, a research area with many applications in image processing and computer vision [21, 55, 72].

2.4.1 Shape Features

The comparison and classification of binary regions is widely used, for example, in optical character recognition (OCR) and for automating processes ranging from blood cell counting to quality control inspection of manufactured products on assembly lines. The analysis of binary regions turns out to be one of the simpler tasks for which many efficient algorithms have been developed and used to implement reliable applications that are in use every day.

By a feature of a region, we mean a specific numerical or qualitative measure that is computable from the values and coordinates of the pixels that make up
the region. As an example, one of the simplest features is its size or area; that is the number of pixels that make up a region. In order to describe a region in a compact form, different features are often combined into a feature vector. This vector is then used as a sort of “signature” for the region that can be used for classification or comparison with other regions. The best features are those that are simple to calculate and are not easily influenced (robust) by irrelevant changes, particularly translation, rotation, and scaling.

2.4.2 Geometric Features

A region \mathcal{R} of a binary image can be interpreted as a two-dimensional distribution of foreground points $\mathbf{x}_i = (u_i, v_i)$ on the discrete plane \mathbb{Z}^2,

$$\mathcal{R} = \{\mathbf{x}_0, \mathbf{x}_1 \ldots \mathbf{x}_{N-1}\} = \{(u_0, v_0), (u_1, v_1) \ldots (u_{N-1}, v_{N-1})\}.$$

Most geometric properties are defined in such a way that a region is considered to be a set of pixels that, in contrast to the definition in Sec. 2.1, does not necessarily have to be connected.

Perimeter

The perimeter (or circumference) of a region \mathcal{R} is defined as the length of its outer contour, where \mathcal{R} must be connected. As illustrated in Fig. 2.14, the type of neighborhood relation must be taken into account for this calculation. When using a 4-neighborhood, the measured length of the contour (except when that length is 1) will be larger than its actual length. In the case of 8-neighborhoods, a good approximation is reached by weighing the horizontal and vertical segments with 1 and diagonal segments with $\sqrt{2}$. Given an 8-connected chain code $c'_R = [c'_0, c'_1, \ldots c'_{M-1}]$, the perimeter of the region is arrived at by

$$\text{Perimeter}(\mathcal{R}) = \sum_{i=0}^{M-1} \text{length}(c'_i), \quad (2.7)$$

with $\text{length}(c) = \begin{cases} 1 & \text{for } c = 0, 2, 4, 6, \\ \sqrt{2} & \text{for } c = 1, 3, 5, 7. \end{cases}$

However, with this conventional method of calculation, the real perimeter ($P(\mathcal{R})$) is systematically overestimated. As a simple remedy, an empirical correction factor of 0.95 works satisfactory even for relatively small regions:

$$P(\mathcal{R}) \approx \text{Perimeter}_{\text{corr}}(\mathcal{R}) = 0.95 \cdot \text{Perimeter}(\mathcal{R}). \quad (2.8)$$
The area of a binary region \(R \) can be found by simply counting the image pixels that make up the region,
\[
A(R) = |R| = N. \tag{2.9}
\]
The area of a connected region without holes can also be approximated from its closed contour, defined by \(M \) coordinate points \((x_0, x_1, \ldots, x_{M-1})\), where \(x_i = (u_i, v_i) \), using the Gaussian area formula for polygons:
\[
A(R) \approx \frac{1}{2} \sum_{i=0}^{M-1} \left| u_i \cdot v_{(i+1) \mod M} - u_{(i+1) \mod M} \cdot v_i \right|. \tag{2.10}
\]
When the contour is already encoded as a chain code \(c'_R = [c'_0, c'_1, \ldots, c'_{M-1}] \), then the region’s area can be computed using Eqn. (2.10) by expanding \(c'_R \) into a sequence of contour points, using an arbitrary starting point (e.g., \((0, 0)\)).

While simple region properties such as area and perimeter are not influenced (except for quantization errors) by translation and rotation of the region, they are definitely affected by changes in size; for example, when the object to which the region corresponds is imaged from different distances. However, as described below, it is possible to specify combined features that are invariant to translation, rotation, and scaling as well.

Compactness and roundness

Compactness is understood as the relation between a region’s area and its perimeter. We can use the fact that a region’s perimeter \(P \) increases linearly with the enlargement factor while the area \(A \) increases quadratically to see that, for a particular shape, the ratio \(A/P^2 \) should be the same at any scale. This ratio can thus be used as a feature that is invariant under translation, rotation, and scaling. When applied to a circular region of any diameter, this ratio has a value of \(\frac{1}{4\pi} \), so by normalizing it against a filled circle, we create a feature that is sensitive to the roundness or circularity of a region,
\[
\text{Circularity}(R) = 4\pi \cdot \frac{A(R)}{P^2(R)}. \tag{2.11}
\]
which results in a maximum value of 1 for a perfectly round region \(R \) and a value in the range \([0, 1)\) for all other shapes (Fig. 2.15). If an absolute value for a region’s roundness is required, the corrected perimeter estimate (Eqn. (2.8)) should be employed:
\[
\text{Circularity}(R) \approx 4\pi \cdot \frac{A(R)}{\text{Perimeter}_{corr}^2(R)}. \tag{2.12}
\]
Figure 2.15 shows the circularity values of different regions as computed with the formulation in Eqn. (2.12).
2.4 Properties of Binary Regions

Figure 2.15 Circularity values for different shapes. Shown are the corresponding estimates for Circularity(\mathcal{R}) as defined in Eqn. (2.12).

Bounding box

The bounding box of a region \mathcal{R} is the minimal axis-parallel rectangle that encloses all points of \mathcal{R},

$$\text{BoundingBox}(\mathcal{R}) = \langle u_{\text{min}}, u_{\text{max}}, v_{\text{min}}, v_{\text{max}} \rangle,$$

(2.13)

where $u_{\text{min}}, u_{\text{max}}$ and $v_{\text{min}}, v_{\text{max}}$ are the minimal and maximal coordinate values of all points $(u_i, v_i) \in \mathcal{R}$ in the x and y directions, respectively (Fig. 2.16 (a)).

Convex hull

The convex hull is the smallest convex polygon that contains all points of the region \mathcal{R}. A physical analogy is a board in which nails stick out in correspondence to each of the points in the region. If you were to place an elastic band around all the nails, then, when you release it, it will contract into a convex hull around the nails (Fig. 2.16 (b)). The convex hull can be computed for N contour points in time $\mathcal{O}(N \log V)$, where V is the number vertices in the polygon of the resulting convex hull [3].

The convex hull is useful, for example, for determining the convexity or the density of a region. The convexity is defined as the relationship between the length of the convex hull and the original perimeter of the region. Density is then defined as the ratio between the area of the region and the area of its convex hull. The diameter, on the other hand, is the maximal distance between any two nodes on the convex hull.

9 For $\mathcal{O}()$ complexity notation, see Vol. 1 [14, Appendix A.3].
2. Regions in Binary Images

2.4.3 Statistical Shape Properties

When computing statistical shape properties, we consider a region \mathcal{R} to be a collection of coordinate points distributed within a two-dimensional space. Since statistical properties can be computed for point distributions that do not form a connected region, they can be applied before segmentation. An important concept in this context are the central moments of the region’s point distribution, which measure characteristic properties with respect to its midpoint or centroid.

Centroid

The centroid or center of gravity of a connected region can be easily visualized. Imagine drawing the region on a piece of cardboard or tin and then cutting it out and attempting to balance it on the tip of your finger. The location on the region where you must place your finger in order for the region to balance is the *centroid* of the region.10

The centroid $\bar{x} = (\bar{x}, \bar{y})$ of a binary (not necessarily connected) region is the arithmetic mean of the coordinates in the x and y directions,

$$\bar{x} = \frac{1}{|\mathcal{R}|} \cdot \sum_{(u,v) \in \mathcal{R}} u \quad \text{and} \quad \bar{y} = \frac{1}{|\mathcal{R}|} \cdot \sum_{(u,v) \in \mathcal{R}} v .$$ \hspace{1cm} (2.14)

10 Assuming you did not imagine a region where the centroid lies outside of the region or within a hole in the region, which is of course possible.
Moments

The formulation of the region’s centroid in Eqn. (2.14) is only a special case of the more general statistical concept of a moment. Specifically, the expression

$$m_{pq} = \sum_{(u,v) \in \mathcal{R}} I(u,v) \cdot u^p v^q \quad (2.15)$$

describes the (ordinary) moment of the order \(p, q\) for a discrete (image) function \(I(u,v) \in \mathbb{R}\); for example, a grayscale image. All the following definitions are also generally applicable to regions in grayscale images. The moments of connected binary regions can also be computed directly from the coordinates of the contour points [64, p. 148].

In the special case of a binary image \(I(u,v) \in \{0, 1\}\), only the foreground pixels with \(I(u,v) = 1\) in the region \(\mathcal{R}\) need to be considered, and therefore Eqn. (2.15) can be simplified to

$$m_{pq} = \sum_{(u,v) \in \mathcal{R}} u^p v^q. \quad (2.16)$$

In this way, the area of a binary region can be expressed as its zero-order moment,

$$A(\mathcal{R}) = |\mathcal{R}| = \sum_{(u,v) \in \mathcal{R}} 1 = \sum_{(u,v) \in \mathcal{R}} u^0 v^0 = m_{00}(\mathcal{R}), \quad (2.17)$$

and similarly the centroid \(\bar{x}\) Eqn. (2.14) as

$$\bar{x} = \frac{1}{|\mathcal{R}|} \cdot \sum_{(u,v) \in \mathcal{R}} u v^0 = \frac{m_{10}(\mathcal{R})}{m_{00}(\mathcal{R})}, \quad (2.18)$$

$$\bar{y} = \frac{1}{|\mathcal{R}|} \cdot \sum_{(u,v) \in \mathcal{R}} u^0 v = \frac{m_{01}(\mathcal{R})}{m_{00}(\mathcal{R})}. \quad (2.19)$$

These moments thus represent concrete physical properties of a region. Specifically, the area \(m_{00}\) is in practice an important basis for characterizing regions, and the centroid \((\bar{x}, \bar{y})\) permits the reliable and (within a fraction of a pixel) exact specification of a region’s position.

Central moments

To compute position-independent (translation-invariant) region features, the region’s centroid, which can be determined precisely in any situation, can be
used as a reference point. In other words, we can shift the origin of the coordinate system to the region’s centroid \(\bar{x} = (\bar{x}, \bar{y}) \) to obtain the central moments of order \(p, q \):

\[
\mu_{pq}(\mathcal{R}) = \sum_{(u,v) \in \mathcal{R}} I(u, v) \cdot (u - \bar{x})^p \cdot (v - \bar{y})^q.
\]

(2.20)

For a binary image (with \(I(u, v) = 1 \) within the region \(\mathcal{R} \)), Eqn. (2.20) can be simplified to

\[
\mu_{pq}(\mathcal{R}) = \sum_{(u,v) \in \mathcal{R}} (u - \bar{x})^p \cdot (v - \bar{y})^q.
\]

(2.21)

Normalized central moments

Central moment values of course depend on the absolute size of the region since the value depends directly on the distance of all region points to its centroid. So, if a 2D shape is scaled uniformly by some factor \(s \in \mathbb{R} \), its central moments multiply by the factor

\[
s^{(p+q+2)}.
\]

(2.22)

Thus size-invariant “normalized” moments are obtained by scaling with the reciprocal of the area \(\mu_{00} = m_{00} \) raised to the required power in the form

\[
\bar{\mu}_{pq}(\mathcal{R}) = \mu_{pq}(\mathcal{R}) \cdot \left(\frac{1}{\mu_{00}(\mathcal{R})} \right)^{(p+q+2)/2}
\]

(2.23)

for \(p + q \geq 2 \) [46, p. 529].

Program 2.3 gives a direct (brute force) Java implementation for computing the ordinary, central, and normalized central moments for binary images (\texttt{BACKGROUND = 0}). This implementation is only meant to clarify the computation, and naturally much more efficient implementations are possible (see, for example, [48]).

2.4.4 Moment-Based Geometrical Properties

While normalized moments can be directly applied for classifying regions, further interesting and geometrically relevant features can be elegantly derived from moments.

Orientation

Orientation describes the direction of the major axis, that is the axis that runs through the centroid and along the widest part of the region (Fig. 2.18(a)). Since rotating the region around the major axis requires less effort (smaller moment of inertia) than spinning it around any other axis, it is sometimes referred to as the major axis of rotation. As an example, when you hold a
2.4 Properties of Binary Regions

```java
import ij.process.ImageProcessor;

public class Moments {
    static final int BACKGROUND = 0;

    static double moment(ImageProcessor ip, int p, int q) {
        double Mpq = 0.0;
        for (int v = 0; v < ip.getHeight(); v++) {
            for (int u = 0; u < ip.getWidth(); u++) {
                if (ip.getPixel(u, v) != BACKGROUND) {
                    Mpq += Math.pow(u, p) * Math.pow(v, q);
                }
            }
        }
        return Mpq;
    }

    static double centralMoment(ImageProcessor ip, int p, int q) {
        double m00 = moment(ip, 0, 0); // region area
        double xCtr = moment(ip, 1, 0) / m00;
        double yCtr = moment(ip, 0, 1) / m00;
        double cMpq = 0.0;
        for (int v = 0; v < ip.getHeight(); v++) {
            for (int u = 0; u < ip.getWidth(); u++) {
                if (ip.getPixel(u, v) != BACKGROUND) {
                    cMpq +=
                        Math.pow(u - xCtr, p) *
                        Math.pow(v - yCtr, q);
                }
            }
        }
        return cMpq;
    }

    static double normalCentralMoment(ImageProcessor ip, int p, int q) {
        double m00 = moment(ip, 0, 0); // region area
        double norm = Math.pow(m00, (double)(p + q + 2) / 2);
        return centralMoment(ip, p, q) / norm;
    }

} // end of class Moments
```

Program 2.3 Example of directly computing moments in Java. The methods `moment()`, `centralMoment()`, and `normalCentralMoment()` compute for a binary image the moments \(m_{pq}, \mu_{pq},\) and \(\bar{\mu}_{pq}\) (Eqns. (2.16), (2.21), and (2.23)).

Pencil between your hands and twist it around its major axis (that is, around the lead), the pencil exhibits the least mass inertia (Fig. 2.17). As long as a region exhibits an orientation at all \((\mu_{20}(\mathcal{R}) \neq \mu_{02}(\mathcal{R}))\), the direction \(\theta_\mathcal{R}\) of the major axis can be found directly from the central moments \(\mu_{pq}\) as
Figure 2.17 Major axis of a region. Rotating an elongated region \mathcal{R}, interpreted as a physical body, around its major axis requires less effort (least moment of inertia) than rotating it around any other axis.

$$
\tan(2\theta_\mathcal{R}) = \frac{2 \cdot \mu_{11}(\mathcal{R})}{\mu_{20}(\mathcal{R}) - \mu_{02}(\mathcal{R})}
$$

(2.24)

and therefore

$$
\theta_\mathcal{R} = \frac{1}{2} \tan^{-1} \left(\frac{2 \cdot \mu_{11}(\mathcal{R})}{\mu_{20}(\mathcal{R}) - \mu_{02}(\mathcal{R})} \right)
$$

(2.25)

$$
\theta_\mathcal{R} = \frac{\text{Arctan}(2 \cdot \mu_{11}(\mathcal{R}), \mu_{20}(\mathcal{R}) - \mu_{02}(\mathcal{R}))}{2}.
$$

(2.26)

The resulting angle $\theta_\mathcal{R}$ is in the range $[-\pi/2, \pi/2]$. Orientation measurements based on region moments are very accurate in general.

Computing orientation vectors. When visualizing region properties, a frequent task is to plot the region’s orientation as a line or arrow, that are usually anchored at the center of gravity $\bar{x} = (\bar{x}, \bar{y})$; for example, by a parametric line of the form

$$
x = \bar{x} + \lambda \cdot x_d = \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} + \lambda \cdot \begin{pmatrix} \cos(\theta_\mathcal{R}) \\ \sin(\theta_\mathcal{R}) \end{pmatrix},
$$

(2.27)

for some length $\lambda > 0$. To find the unit orientation vector $x_d = (\cos \theta, \sin \theta)^T$, we could first compute the inverse tangent to get 2θ (Eqn. (2.25)) and then compute the cosine and sine of θ. However, the vector x_d can also be obtained without using trigonometric functions as follows. Rewriting Eqn. (2.24) as

$$
\tan(2\theta_\mathcal{R}) = \frac{2 \cdot \mu_{11}(\mathcal{R})}{\mu_{20}(\mathcal{R}) - \mu_{02}(\mathcal{R})} = \frac{A}{B} = \frac{\sin(2\theta_\mathcal{R})}{\cos(2\theta_\mathcal{R})}
$$

(2.28)

Footnote: See Appendix A.1 for the computation of angles with the Arctan() (inverse tangent) function and Vol. 1 [14, Appendix B.1.6] for the corresponding Java method Math.atan2().
2.4 Properties of Binary Regions

we get (by Pythagoras’ theorem)

\[
\sin(2\theta_R) = \frac{A}{\sqrt{A^2 + B^2}} \quad \text{and} \quad \cos(2\theta_R) = \frac{B}{\sqrt{A^2 + B^2}},
\]

where \(A = 2\mu_{11}(R)\) and \(B = \mu_{20}(R) - \mu_{02}(R)\). Using the relations \(\cos^2\alpha = \frac{1}{2}[1 + \cos(2\alpha)]\) and \(\sin^2\alpha = \frac{1}{2}[1 - \cos(2\alpha)]\), we can compute the region’s orientation vector \(\mathbf{x}_d = (x_d, y_d)^T\) as

\[
x_d = \cos(\theta_R) = \begin{cases} 0 & \text{for } A = B = 0 \\ \left[\frac{1}{2} \left(1 + \frac{B}{\sqrt{A^2 + B^2}}\right)\right]^{\frac{1}{2}} & \text{otherwise,} \end{cases}
\]

\[
y_d = \sin(\theta_R) = \begin{cases} 0 & \text{for } A = B = 0 \\ \left[\frac{1}{2} \left(1 - \frac{B}{\sqrt{A^2 + B^2}}\right)\right]^{\frac{1}{2}} & \text{for } A \geq 0 \\ -\left[\frac{1}{2} \left(1 - \frac{b}{\sqrt{a^2 + b^2}}\right)\right]^{\frac{1}{2}} & \text{for } A < 0, \end{cases}
\]

straight from the central region moments \(\mu_{11}(R), \mu_{20}(R), \) and \(\mu_{02}(R)\), as defined in Eqn. (2.28). The horizontal component \((x_d)\) in Eqn. (2.29) is always positive, while the case clause in Eqn. (2.30) corrects the sign of the vertical component \((y_d)\) to map to the same angular range \([-\frac{\pi}{2}, +\frac{\pi}{2}]\) as Eqn. (2.25). The resulting vector \(\mathbf{x}_d\) is normalized (i.e., \(||(x_d, y_d)|| = 1\)) and could be scaled.
arbitrarily for display purposes by a suitable length \(\lambda \), for example, using the region’s eccentricity value described below.

Eccentricity

Similar to the region orientation, moments can also be used to determine the “elongatedness” or eccentricity of a region. A naive approach for computing the eccentricity could be to rotate the region until we can fit a bounding box (or enclosing ellipse) with a maximum aspect ratio. Of course this process would be computationally intensive simply because of the many rotations required. If we know the orientation of the region (Eqn. (2.25)), then we may fit a bounding box that is parallel to the region’s major axis. In general, the proportions of the region’s bounding box is not a good eccentricity measure anyway because it does not consider the distribution of pixels inside the box.

Based on region moments, highly accurate and stable measures can be obtained without any iterative search or optimization. Also, moment-based methods do not require knowledge of the boundary length (as required for computing the circularity feature in Sec. 2.4.2), and they can also handle nonconnected regions or point clouds. Several different formulations of region eccentricity can be found in the literature \([2,46,47]\) (see also Exercise 2.11). We adopt the following definition because of its simple geometrical interpretation:

\[
\text{Ecc}(\mathcal{R}) = \frac{a_1}{a_2} = \frac{\mu_{20} + \mu_{02} + \sqrt{(\mu_{20} - \mu_{02})^2 + 4 \cdot \mu_{11}^2}}{\mu_{20} + \mu_{02} - \sqrt{(\mu_{20} - \mu_{02})^2 + 4 \cdot \mu_{11}^2}},
\]

(2.31)

where \(a_1 = 2\lambda_1 \), \(a_2 = 2\lambda_2 \) are multiples of the eigenvalues \(\lambda_1, \lambda_2 \) of the symmetric \(2 \times 2 \) matrix

\[
\mathbf{A} = \begin{pmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{pmatrix}
\]

formed by the central moments \(\mu_{pq} \) of the region \(\mathcal{R} \). The values of Ecc are in the range \([1, \infty)\), where Ecc = 1 corresponds to a circular disk and elongated regions have values > 1. Ecc itself is invariant to the region’s orientation and size. However, the values \(a_1, a_2 \) contain information about the spatial extent of the region. Geometrically, the eigenvalues \(\lambda_1, \lambda_2 \) (and thus \(a_1, a_2 \)) directly relate to the proportions of the “equivalent” ellipse, positioned at the region’s center of gravity \((\bar{x}, \bar{y})\) and oriented at \(\theta = \theta_{\mathcal{R}} \) Eqn. (2.25). The lengths of the ellipse’s major and minor axes, \(r_a \) and \(r_b \), are

\[
\begin{align*}
\frac{r_a}{|\mathcal{R}|} &= \left(\frac{\lambda_1}{|\mathcal{R}|} \right)^{\frac{1}{2}} = \left(\frac{2a_1}{|\mathcal{R}|} \right)^{\frac{1}{2}}, \\
\frac{r_b}{|\mathcal{R}|} &= \left(\frac{\lambda_2}{|\mathcal{R}|} \right)^{\frac{1}{2}} = \left(\frac{2a_2}{|\mathcal{R}|} \right)^{\frac{1}{2}},
\end{align*}
\]

(2.32, 2.33)
Figure 2.19 Orientation and eccentricity examples. The orientation θ (Eqn. (2.25)) is displayed for each connected region as a vector with the length proportional to the region’s eccentricity value $\text{Ecc}(R)$ (Eqn. (2.31)). Also shown are the ellipses (Eqns. (2.32) and (2.33)) corresponding to the orientation and eccentricity parameters.

respectively, with a_1, a_2 as defined in Eqn. (2.31) and $|\mathcal{R}|$ being the number of pixels in the region. The resulting parametric equation of the equivalent ellipse is

$$
\begin{pmatrix}
 x(t) \\
 y(t)
\end{pmatrix}
= \begin{pmatrix}
 \bar{x} \\
 \bar{y}
\end{pmatrix} + \begin{pmatrix}
 \cos(\theta) - \sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{pmatrix} \cdot \begin{pmatrix}
 r_a \cdot \cos(t) \\
 r_b \cdot \sin(t)
\end{pmatrix}
$$

$$
= \begin{pmatrix}
 \bar{x} + \cos(\theta) \cdot r_a \cdot \cos(t) - \sin(\theta) \cdot r_b \cdot \sin(t) \\
 \bar{y} + \sin(\theta) \cdot r_a \cdot \cos(t) + \cos(\theta) \cdot r_b \cdot \sin(t)
\end{pmatrix}
$$

(2.34)

for $0 \leq t < 2\pi$. If entirely filled, the region described by this ellipse would have the same (first and second order) central moments as the original region \mathcal{R}. Figure 2.19 shows a set of regions with overlaid orientation and eccentricity results.

Invariant moments

Normalized central moments are not affected by the translation or uniform scaling of a region (i.e., the values are invariant), but in general rotating the image will change these values. A classical solution to this problem is a clever
combination of simpler features known as “Hu’s Moments” [37]:

\[H_1 = \bar{\mu}_{20} + \bar{\mu}_{02}, \]
\[H_2 = (\bar{\mu}_{20} - \bar{\mu}_{02})^2 + 4\bar{\mu}_{11}^2, \]
\[H_3 = (\bar{\mu}_{30} - 3\bar{\mu}_{12})^2 + (3\bar{\mu}_{21} - \bar{\mu}_{03})^2, \]
\[H_4 = (\bar{\mu}_{30} + \bar{\mu}_{12})^2 + (\bar{\mu}_{21} + \bar{\mu}_{03})^2, \]
\[H_5 = (\bar{\mu}_{30} - 3\bar{\mu}_{12}) \cdot (\bar{\mu}_{30} + \bar{\mu}_{12}) \cdot \left[(\bar{\mu}_{30} + \bar{\mu}_{12})^2 - 3(\bar{\mu}_{21} + \bar{\mu}_{03})^2 \right] \]
\[+ (3\bar{\mu}_{21} - \bar{\mu}_{03}) \cdot (\bar{\mu}_{21} + \bar{\mu}_{03}) \cdot \left[3(\bar{\mu}_{30} + \bar{\mu}_{12})^2 - (\bar{\mu}_{21} + \bar{\mu}_{03})^2 \right], \]
\[H_6 = (\bar{\mu}_{20} - \bar{\mu}_{02}) \cdot \left[(\bar{\mu}_{30} + \bar{\mu}_{12})^2 - (\bar{\mu}_{21} + \bar{\mu}_{03})^2 \right] \]
\[+ 4\bar{\mu}_{11} \cdot (\bar{\mu}_{30} + \bar{\mu}_{12}) \cdot (\bar{\mu}_{21} + \bar{\mu}_{03}), \]
\[H_7 = (3\bar{\mu}_{21} - \bar{\mu}_{03}) \cdot (\bar{\mu}_{30} + \bar{\mu}_{12}) \cdot \left[(\bar{\mu}_{30} + \bar{\mu}_{12})^2 - 3(\bar{\mu}_{21} + \bar{\mu}_{03})^2 \right] \]
\[+ (3\bar{\mu}_{12} - \bar{\mu}_{30}) \cdot (\bar{\mu}_{21} + \bar{\mu}_{03}) \cdot \left[3(\bar{\mu}_{30} + \bar{\mu}_{12})^2 - (\bar{\mu}_{21} + \bar{\mu}_{03})^2 \right]. \]

In practice, the logarithm of the results (that is, \(\log(H_k) \)) is used since the raw values can have a very large range. These features are also known as moment invariants since they are invariant under translation, rotation, and scaling. While defined here for binary images, they are also applicable to grayscale images; for further information, see [28, p. 517].

2.4.5 Projections

Image projections are one-dimensional representations of the image contents, usually computed parallel to the coordinate axis; in this case, the horizontal, as well as the vertical, projection of an image \(I(u, v) \), with \(0 \leq u < M, 0 \leq v < N \), defined as

\[
P_{\text{hor}}(v_0) = \sum_{u=0}^{M-1} I(u, v_0) \quad \text{for} \ 0 \leq v_0 < N, \tag{2.36}
\]
\[
P_{\text{ver}}(u_0) = \sum_{v=0}^{N-1} I(u_0, v) \quad \text{for} \ 0 \leq u_0 < M. \tag{2.37}
\]

The horizontal projection \(P_{\text{hor}}(v_0) \) (Eqn. (2.36)) is the sum of the pixel values in the image row \(v_0 \) and has length \(N \) corresponding to the height of the image. On the other hand, a vertical projection \(P_{\text{ver}} \) of length \(M \) is the sum of all the values in the image column \(u_0 \) (Eqn. (2.37)). In the case of a binary image with \(I(u, v) \in \{0, 1\} \), the projection contains the count of the foreground pixels in the corresponding image row or column.

\[12\] In order to improve the legibility of Eqn. (2.35) the argument for the region \(\mathcal{R} \) has been dropped; as an example, with the region argument, the first line would read \(H_1(\mathcal{R}) = \bar{\mu}_{20}(\mathcal{R}) + \bar{\mu}_{02}(\mathcal{R}) \), and so on.
Program 2.4 Computation of horizontal and vertical projections. The run() method for an ImageJ plugin (ip is of type ByteProcessor or ShortProcessor) computes the projections in x and y directions simultaneously in a single traversal of the image. The projections are represented by the one-dimensional arrays horProj and verProj with elements of type int.

Program Prog. 2.4 gives a direct implementation of the projection calculations as the run() method for an ImageJ plugin, where projections in both directions are computed during a single traversal of the image.

Projections in the direction of the coordinate axis are often utilized to quickly analyze the structure of an image and isolate its component parts; for example, in document images it is used to separate graphic elements from text blocks as well as to isolate individual lines (see the example in Fig. 2.20). In practice, especially to account for document skew, projections are often computed along the major axis of an image region Eqn. (2.25). When the projection vectors of a region are computed in reference to the centroid of the region along the major axis, the result is a rotation-invariant vector description (often referred to as a “signature”) of the region.

2.4.6 Topological Properties

Topological features do not describe the shape of a region in continuous terms; instead, they capture its structural properties. They are typically invariant even under extreme image transformations. Two simple and robust topological features are the number of regions $N_R(\mathcal{R})$ and the number of holes $N_L(\mathcal{R})$ in those regions. $N_L(\mathcal{R})$ can be easily computed while finding the inner contours of a region, as described in Sec. 2.2.2.

A feature that can be derived from the number of holes is the so-called Euler number N_E, which is the difference between the number of connected
regions N_R and the number of their holes N_H,

$$N_E(\mathcal{R}) = N_R(\mathcal{R}) - N_H(\mathcal{R}).$$ \hspace{1cm} (2.38)

For a single connected region, the above formula simplifies to $1 - N_H$, so, for example, for an image of the number “8”, $N_E = 1 - 2 = -1$, while for an image of the letter “D”, $N_E = 1 - 1 = 0$.

Topological features are often used in combination with numerical features for classification, for example in optical character recognition (OCR) [12].

2.5 Exercises

Exercise 2.1
Trace, by hand, the execution of both variations (depth-first and breadth-first) of the flood-fill algorithm using the image shown in Fig. 2.21 and starting at coordinates $(5, 1)$.

Exercise 2.2
The implementation of the flood-fill algorithm in Prog. 2.1 places all the neighboring pixels of each visited pixel into either the stack or the queue without ensuring they are foreground pixels and that they lie within the image boundaries. The number of items in the stack or the queue can be reduced by ignoring (not inserting) those neighboring pixels that do not
meet the two conditions given above. Modify the depth-first and breadth-first variants given in Prog. 2.1 accordingly and compare the new running times.

Exercise 2.3
Implement an ImageJ plugin that encodes a grayscale image using run length encoding (Sec. 2.3.2) and stores it in a file. Develop a second plugin that reads the file and reconstructs the image.

Exercise 2.4
Calculate the amount of memory required to represent a contour with 1000 points in the following ways: (a) as a sequence of coordinate points stored as pairs of int values; (b) as an 8-chain code using Java byte elements, and (c) as an 8-chain code using only 3 bits per element.

Exercise 2.5
Implement a Java class for describing a binary image region using chain codes. It is up to you, whether you want to use an absolute or differential chain code. The implementation should be able to encode closed contours as chain codes and also reconstruct the contours given a chain code.

Exercise 2.6
While computing the convex hull of a region, the maximal diameter (maximum distance between two arbitrary points) can also be simply found. Devise an alternative method for computing this feature without using the convex hull. Determine the running time of your algorithm in terms of the number of points in the region.

Exercise 2.7
Implement an algorithm for comparing contours using their shape numbers Eqn. (2.3). For this purpose, develop a metric for measuring the distance between two normalized chain codes. Describe if, and under which conditions, the results will be reliable.
Exercise 2.8
Using Eqn. (2.10) as the basis, develop and implement an algorithm that computes the area of a region from its 8-chain code encoded contour. What type of discrepancy from the region’s actual area (the number of pixels it contains) do you expect?

Exercise 2.9
Sketch an example binary region where the centroid lies outside of the region.

Exercise 2.10
Implement the moment features developed by Hu (Eqn. (2.35)) and show that they are invariant under scaling and rotation for both binary and grayscale images.

Exercise 2.11
There are alternative definitions for the eccentricity of a region Eqn. (2.31); for example,

\[
\begin{align*}
\text{Ecc}_2(R) &= \frac{(\mu_{20} - \mu_{02})^2 + 4 \cdot \mu_{11}^2}{(\mu_{20} + \mu_{02})^2} \quad [47, \text{p. 394}], \\
\text{Ecc}_3(R) &= \frac{(\mu_{20} - \mu_{02})^2 + 4 \cdot \mu_{11}}{m_{00}} \quad [46, \text{p. 531}], \\
\text{Ecc}_4(R) &= \sqrt{\mu_{20} - \mu_{02} + 4 \cdot \mu_{11}} \quad [2, \text{p. 255}].
\end{align*}
\]

Implement all four variations (including the one in Eqn. (2.31)) and contrast the results using suitably designed regions. Determine how these measures work and what their range of values is, and propose a geometrical interpretation for each.

Exercise 2.12
Write an ImageJ plugin that (a) finds (labels) all regions in a binary image, (b) computes the orientation and eccentricity for each region, and (c) shows the results as a direction vector and the equivalent ellipse on top of each region (as exemplified in Fig. 2.19). Hint: Use Eqn. (2.34) to develop a method for drawing ellipses at arbitrary orientations (not available in ImageJ).

Exercise 2.13
The Java method in Prog. 2.4 computes an image’s horizontal and vertical projections. For document image processing, projections in the diagonal directions are also useful. Implement these projections and consider what role they play in document image analysis.
Principles of Digital Image Processing
Core Algorithms
Burger, W.; Burge, M.J.
2009, XII, 332 p. With online files/update., Softcover