This book provides a modern, algorithmic introduction to digital image processing, designed to be used both by learners desiring a firm foundation on which to build and practitioners in search of critical analysis and modern implementations of the most important techniques. This updated and enhanced paperback edition of our comprehensive textbook Digital Image Processing: An Algorithmic Approach Using Java packages the original material into a series of compact volumes, thereby supporting a flexible sequence of courses in digital image processing. Tailoring the contents to the scope of individual semester courses is also an attempt to provide affordable (and “backpack-compatible”) textbooks without compromising the quality and depth of content.

One approach to learning a new language is to become conversant in the core vocabulary and to start using it right away. At first, you may only know how to ask for directions, order coffee, and so on, but once you become confident with the core, you will start engaging others in “conversations” and rapidly learn how to get things done. This step-by-step approach works equally well in many areas of science and engineering.

In this first volume, ostentatiously titled Fundamental Techniques, we have attempted to compile the core “vocabulary” of digital image processing, starting from the basic concepts and elementary properties of digital images through simple statistics and point operations, fundamental filtering techniques, localization of edges and contours, and basic operations on color images. Mastering these most commonly used techniques and algorithms will enable you to start being productive right away.

The second volume of this series (Core Algorithms) extends the presented material, being devoted to slightly more advanced techniques and algorithms that are, nevertheless, part of the standard image processing toolbox. A forthcoming third volume (Advanced Techniques) will extend this series and add
important material beyond the elementary level for an advanced undergraduate or even graduate course.

Math, Algorithms, and “Real” Code

While we always concentrate on practical applications and working implementations, we do so without glossing over the important formal details and mathematics necessary for a deeper understanding of the algorithms. In preparing this text, we started from the premise that simply creating a recipe book of imaging solutions would not provide the deeper understanding needed to apply these techniques to novel problems. Instead, our solutions typically develop stepwise along three different perspectives: (a) in mathematical form, (b) as abstract, pseudocode algorithms, and (c) as complete implementations in a real programming language. We use a common and consistent notation throughout to intertwine all three perspectives, thus providing multiple but linked views of the problem and its solution.

Software

The implementations in this series of texts are all based on Java and ImageJ, a widely used programmer-extensible imaging system developed, maintained, and distributed by Wayne Rasband of the National Institutes of Health (NIH).¹ ImageJ is implemented completely in Java and therefore runs on all major platforms. It is widely used because its “plugin”-based architecture enables it to be easily extended. Although all examples run in ImageJ, they have been specifically designed to be easily ported to other environments and programming languages.

We chose Java as an implementation language because it is elegant, portable, familiar to many computing students, and more efficient than commonly thought. Although it may not be the fastest environment for numerical processing of raster images, we think that Java has great advantages when it comes to dynamic data structures and compile-time debugging. Note, however, that we use Java purely as an instructional vehicle because precise semantics are needed and, thus, everything presented here could be easily implemented in almost any other modern programming language. Although we stress the clarity and readability of our software, this is certainly not a book series on Java programming nor does it serve as a reference manual for ImageJ.

Online Resources

The authors maintain a Website for this text that provides supplementary materials, including the complete Java source code for the examples, the test images used in the figures, and corrections. Visit this site at

www.imagingbook.com

Additional materials are available for educators, including a complete set of figures, tables, and mathematical elements shown in the text, in a format suitable for easy inclusion in presentations and course notes. Comments, questions, and corrections are welcome and should be addressed to

imagingbook@gmail.com

Acknowledgements

As with its predecessors, this book would not have been possible without the understanding and steady support of our families. Thanks go to Wayne Rasband at NIH for developing and refining ImageJ and for his truly outstanding support of the growing user community. We appreciate the contribution from many careful readers who have contacted us to suggest new topics, recommend alternative solutions, or suggested corrections. Finally, we are grateful to Wayne Wheeler for initiating this book series and Catherine Brett and her colleagues at Springer’s UK and New York offices for their professional support.

Hagenberg, Austria / Washington DC, USA
July 2008
Principles of Digital Image Processing
Fundamental Techniques
Burger, W.; Burge, M.J.
2009, XIV, 261 p. With online files/update., Softcover
ISBN: 978-1-84800-190-9