2

Elements of Formal Languages

2.1 Overview

In this chapter, we discuss:

- the building blocks of formal languages: *alphabets* and *strings*
- *grammars* and *languages*
- a way of classifying grammars and languages: the *Chomsky hierarchy*
- how formal languages relate to the definition of programming languages and introduce:
 - writing definitions of sets of strings
 - producing sentences from grammars
 - using the notation of formal languages.

2.2 Alphabets

An alphabet is a finite collection (or set) of symbols. The symbols in the alphabet are entities which cannot be taken apart in any meaningful way, a property which leads to them being sometimes referred to as *atomic*. The symbols of an alphabet are simply the “characters”, from which we build our “words”. As already said, an
alphabet is *finite*. That means we could define a program that would print out its elements (or members) one by one, and (this last part is very important) the program would terminate sometime, having printed out each and every element.

For example, the small letters you use to form words of your own language (e.g. English) could be regarded as an alphabet, in the formal sense, if written down as follows:

\[\{ a, b, c, d, e, \ldots, x, y, z \} . \]

The digits of the (base 10) number system we use can also be presented as an alphabet:

\[\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \} . \]

2.3 Strings

A string is a finite sequence of zero or more symbols taken from a formal alphabet. We write down strings just as we write the words of this sentence, so the word “strings” itself could be regarded as a *string* taken from the alphabet of letters, above. Mathematicians sometimes say that a string taken from a given alphabet is a string *over* that alphabet, but we will say that the string is *taken from* the alphabet. Let us consider some more examples. The string *abc* is one of the many strings which can be taken from the alphabet \{ *a*, *b*, *c*, *d* \}. So is *aabacab*. Note that duplicate symbols are allowed in strings (unlike in sets). If there are no symbols in a string it is called the *empty string*, and we write it as \(\varepsilon \) (the Greek letter epsilon), though some write it as \(\lambda \) (the Greek letter lambda).

2.3.1 Functions that Apply to Strings

We now know enough about strings to describe some important functions that we can use to manipulate strings or obtain information about them. Table 2.1 shows the basic string operations (note that \(x \) and \(y \) stand for *any* strings).

You may have noticed that strings have certain features in common with *arrays* in programming languages such as Pascal, in that we can index them. To index a string, we use the notation \(x_i \), as opposed to something like \(x[i] \). However, strings actually have more in common with the list data structures of programming languages such as LISP or PROLOG, in that we can concatenate two strings.
together, creating a new string. This is like the append function in LISP, with strings corresponding to lists, and the empty string corresponding to the empty list. It is only possible to perform such operations on arrays if the programming language allows arrays to be of dynamic size. (which Pascal, for example, does not). However, many versions of Pascal now provide a special dynamic “string” data type, on which operations such as concatenation can be carried out.

2.3.2 Useful Notation for Describing Strings

As described above, a string is a sequence of symbols taken from some alphabet. Later, we will need to say such things as:

“suppose \(x \) stands for some string taken from the alphabet \(A \)”.

This is a rather clumsy phrase to have to use. A more accurate, though even clumsier, way of saying it is to say

“\(x \) is an element of the set of all strings which can be formed using zero or more symbols of the alphabet \(A \)”.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Written as</th>
<th>Meaning</th>
<th>Examples and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>(</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(</td>
</tr>
<tr>
<td>concatenation</td>
<td>(xy)</td>
<td>the string formed by writing down the string (x) followed immediately by the string (y)</td>
<td>let (x = abc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>concatenating the empty string to any string</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>makes no difference</td>
</tr>
<tr>
<td>power</td>
<td>(x^n), where (n) is a whole number (\geq 0)</td>
<td>the string formed by writing down (n) copies of the string (x)</td>
<td>let (x = abc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>then: (x^1 = x)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x^0 = \epsilon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: (x^0 = \epsilon)</td>
</tr>
<tr>
<td>index</td>
<td>(x_i), where (i) is a whole number</td>
<td>the (i) th symbol in the string (x) (i.e. treats the string as if it were an array of symbols)</td>
<td>let (x = abc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>then: (x_1 = a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x_2 = b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x_3 = c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x_4 = a)</td>
</tr>
</tbody>
</table>
There is a convenient and simple notational device to say this. We represent the latter statement as follows:

\[x \in A^*, \]

which relates to the English version as shown in Figure 2.1.

On other occasions, we may wish to say something like:

“\(x \) is an element of the set of all strings which can be formed using \textit{one} or more symbols of the alphabet \(A \),”

for which we write:

\[x \in A^+ \]

which relates to the associated verbal description as shown in Figure 2.2.

Suppose we have the alphabet \(\{ a, b, c \} \). Then \(\{ a, b, c \}^* \) is the set

\[\{ \varepsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaca, aacc, abca, abbc, \ldots \}. \]

Clearly, for any non-empty alphabet (i.e. an alphabet consisting of one or more symbols), the set so defined will be \textit{infinite}.

Earlier in the chapter, we discussed the notion of a program printing out the elements of a \textit{finite} set, one by one, terminating when all of the elements

\[x \in A^* \]

Figure 2.1 How we specify an unknown, possibly empty, string.

\[x \in A^+ \]

Figure 2.2 How we specify an unknown, non-empty, string.
of the set had been printed. If A is some alphabet, we could write a program to print out all the strings in A^*, one by one, such that each string only gets printed out once. Obviously, such a program would never terminate (because A^* is an infinite set), but we could design the program so that any string in A^* would appear within a finite period of time. Table 2.2 shows a possible method for doing this (as an exercise, you might like to develop the method into a program in your favourite programming language). The method is suggested by the way the first few elements of the set A^*, for $A=\{a, b, c\}$ were written down, above.

An infinite set for which we can print out any given element within a finite time of starting the program is known as a countably infinite set. I suggest you think carefully about the program in Table 2.2, as it may help you to appreciate just what is meant by the terms “infinite” and “finite”. Clearly, the program specified in Table 2.2 would never terminate. However, on each iteration of the loop, i would have a finite value, and so any string printed out would be finite in length (a necessary condition for a string). Moreover, any string in A^* would appear after a finite period of time.

2.4 Formal Languages

Now we know how to express the notion of all of the strings that can be formed by using symbols from an alphabet, we are in a position to describe what is meant by the term formal language. Essentially, a formal language is simply any set of strings formed using the symbols from any alphabet. In set parlance, given some alphabet A,

\[
\text{a formal language is “any (proper or non-proper) subset of the set of all strings which can be formed using zero or more symbols of the alphabet } A.\]

The formal expression of the above statement can be seen in Figure 2.3.
A proper subset of a set is not allowed to be the whole of a given set. For example, the set \(\{a, b, c\} \) is a proper subset of the set \(\{a, b, c, d\} \), but the set \(\{a, b, c, d\} \) is not.

A non-proper subset is a subset that is allowed to be the whole of a set. So, the above definition says that, for a given alphabet, \(A \), \(A^* \) is a formal language, and so is any subset of \(A^* \). Note that this also means that the empty set, written \(\{\} \) (sometimes written as \(\emptyset \)) is also a formal language, since it’s a subset of \(A^* \) (the empty set is a subset of any set).

A formal language, then, is any set of strings. To indicate that the strings are part of a language, we usually call them sentences. In some books, sentences are called words. However, while the strings we have seen so far are similar to English words, in that they are unbroken sequences of alphabetic symbols (e.g. \(abca \)), later we will see strings that are statements in a programming language, such as

\[
\text{if } i > 1 \text{ then } x := x + 1.
\]

It seems peculiar to call a statement such as this a “word”.

2.5 Methods for Defining Formal Languages

Our definition of a formal language as being a set of strings that are called sentences is extremely simple. However, it does not allow us to say anything about the form of sentences in a particular language. For example, in terms of our definition, the Pascal programming language, by which we mean “the set of all syntactically correct Pascal programs”, is a subset of the set of all strings which can be formed using symbols found in the character set of a typical computer. This definition, though true, is not particularly helpful if we want to write Pascal programs. It tells us nothing about what makes one string a Pascal program, and another string not a Pascal program, except in the trivial sense that we can immediately rule out any strings containing symbols that are not in the character set of the computer. You would be most displeased if, in attempting to learn to program in Pascal, you opened the Pascal manual to find
that it consisted entirely of one statement which said: “Let \(C \) be the set of all characters available on the computer. Then the set of compilable Pascal programs, \(P \), is a subset of \(C^* \).”

One way of informing you what constitutes “proper” Pascal programs would be to write all the proper ones out for you. However, this would also be unhelpful, albeit in a different way, since such a manual would be infinite, and thus could never be completed. Moreover, it would be a rather tedious process to find the particular program you required.

In this section we discover three approaches to defining a formal language. Following this, every formal language we meet in this book will be defined according to one or more of these approaches.

2.5.1 Set Definitions of Languages

Since a language is a set of strings, the obvious way to describe some language is by providing a set definition. Set definitions of the formal languages in which we are interested are of three different types, as now discussed.

The first type of set definition we consider is only used for the smallest finite languages, and consists of writing the language out in its entirety. For example,

\[\{ \varepsilon, abc, abba, abca \} \]

is a language consisting of exactly four strings.

The second method is used for infinite languages, but those in which there is some obvious pattern in all of the strings that we can assume the reader will induce when presented with sufficient instances of that pattern. In this case, we write out sufficient sentences for the pattern to be made clear, then indicate that the pattern should be allowed to continue indefinitely, by using three dots “...”. For example,

\[\{ ab, aabb, aaabbb, aaaabbbb, \ldots \} \]

suggests the infinite language consisting of all strings which consist of one or more \(a \)s followed by one or more \(b \)s and in which the number of \(a \)s equals the number of \(b \)s.

The final method, used for many finite and infinite languages, is to use a set definition to specify how to construct the sentences in the language, i.e., provide a function to deliver the sentences as its output. In addition to the function itself, we must provide a specification of how many strings should be constructed. Such set definitions have the format shown in Figure 2.4.
For the “function to produce strings”, of Figure 2.4, we use combinations of the string functions we considered earlier (index, power and concatenation). A language that was defined immediately above, “all strings which consist of one or more as followed by one or more bs and in which the number of as equals the number of bs” can be defined using our latest method as:

$$\{a^i b^i : i \geq 1\}.$$

The above definition is explained in Table 2.3.

From Table 2.3 we can see that $\{a^i b^i : i \geq 1\}$ means:

“the set of all strings consisting of i copies of a followed by i copies of b such that i is allowed to take on the value of each and every whole number value greater than or equal to 1”.

<table>
<thead>
<tr>
<th>Notation</th>
<th>String function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>N/A</td>
<td>“the string a”</td>
</tr>
<tr>
<td>b</td>
<td>N/A</td>
<td>“the string b”</td>
</tr>
<tr>
<td>a^i</td>
<td>power</td>
<td>“the string formed by writing down i copies of the string a”</td>
</tr>
<tr>
<td>b^i</td>
<td>power</td>
<td>“the string formed by writing down i copies of the string b”</td>
</tr>
<tr>
<td>$a^i b^i$</td>
<td>concatenation</td>
<td>“the string formed by writing down i copies of a followed by i copies of b”</td>
</tr>
<tr>
<td>$: i \geq 1$</td>
<td>N/A</td>
<td>“such that i is allowed to take on the value of each and every whole number value greater than or equal to 1 (we could have written $i > 0$)”</td>
</tr>
</tbody>
</table>
Changing the right-hand side of the set definition can change the language defined. For example \{a^ib^i : i \geq 0\} defines:

“the set of all strings consisting of \(i\) copies of \(a\) followed by \(i\) copies of \(b\) such that \(i\) is allowed to take on the value of each and every whole number value greater than or equal to 0”.

This latter set is our original set, along with the empty string (since \(a^0 = \varepsilon\), \(b^0 = \varepsilon\), and therefore \(a^0b^0 = \varepsilon \varepsilon = \varepsilon\)). In set parlance, \{a^ib^i : i \geq 0\} is the union of the set \{a^ib^i : i \geq 1\} with the set \{\varepsilon\}, which can be written:

\[
\{a^ib^i : i \geq 0\} = \{a^ib^i : i \geq 1\} \cup \{\varepsilon\}.
\]

The immediately preceding example illustrates a further useful feature of sets. We can often simplify the definition of a language by creating several sets and using the union, intersection and set difference operators to combine them into one. This sometimes removes the need for a complicated expression in the right-hand side of our set definition. For example, the definition

\[
\{a^ib^j : i \geq 1, j \geq 0, \text{ if } i \geq 3 \text{ then } j = 0 \text{ else } k = 0\}
\]

is probably better represented as

\[
\{a^ic^j : i \geq 3, j \geq 0\} \cup \{a^ib^j : 1 \leq i < 3, j \geq 0\},
\]

which means

“the set of strings consisting of 3 or more \(a\)s followed by zero or more \(c\)s, or consisting of 1 or 2 \(a\)s followed by zero or more \(b\)s”.

2.5.2 Decision Programs for Languages

We have seen how to define a language by using a formal set definition. Another way of describing a language is to provide a program that tells us whether or not any given string of symbols is one of its sentences. Such a program is called a decision program. If the program always tells us, for any string, whether or not the string is a sentence, then the program in an implicit sense defines the language, in that the language is the set containing each and every string that the program tells us is a sentence. That is why we use a special term, “sentence”, to describe a string that belongs to a language. A string input to the program may or may not be a sentence of the language; the program should tell us. For an alphabet \(A\), a language is any subset of \(A^*\). For any interesting language, then, there will be many strings in \(A^*\) that are not sentences.
Later in this book we will be more precise about the form these decision programs take, and what can actually be achieved with them. For now, however, we will consider an example to show the basic idea.

If you have done any programming at all, you will have used a decision program on numerous occasions. The decision program you have used is a component of the compiler. If you write programs in a language such as Pascal, you submit your program text to a compiler, and the compiler tells you if the text is a syntactically correct Pascal program. Of course, the compiler does a lot more than this, but a very important part of its job is to tell us if the source text (string) is a syntactically correct Pascal program, i.e. a sentence of the language called “Pascal”.

Consider again the language

\[\{a^i c^j : i \geq 3, j \geq 0\} \cup \{a^i b^j : 1 \leq i < 3, j \geq 0\}, \]

i.e.,

“the set of strings consisting of 3 or more as followed by zero or more cs, or consisting of 1 or 2 as followed by zero or more bs”.

Table 2.4 shows a decision program for the language.

The program of Table 2.4 is purely for illustration. In the next chapter we consider formal languages for which the above type of decision program can be created automatically. For now, examine the program to convince yourself that it correctly meets its specification, which can be stated as follows:

“given any string in \(\{a, b, c\}^*\), tell us whether or not that string is a sentence of the language

\[\{a^i c^j : i \geq 3, j \geq 0\} \cup \{a^i b^j : 1 \leq i < 3, j \geq 0\}\].”

2.5.3 Rules for Generating Languages

We have seen how to describe formal languages by providing set definitions and we have encountered the notion of a decision program for a language. The third method, which is the basis for the remainder of this chapter, defines a language by providing a set of rules to generate sentences of a language. We require that such rules are able to generate every one of the sentences of a language, and no others. Analogously, a set definition describes every one of the sentences, and no others, and a decision program says “yes” to every one of the sentences, and to no others.
Table 2.4 A decision program for a formal language.

1: read(sym) {assume read just gives us the next symbol in the string being examined}
 case sym of
 eos: goto N {assume read returns special symbol “eos” if at end of string}
 “a”: goto 2
 “b”: goto N
 “c”: goto N
 endcase

2: read(sym)
 case sym of
 eos: goto Y {if we get here we have a string of one a which is OK}
 “a”: goto 3
 “b”: goto 6 {we can have a b after one a}
 “c”: goto N {any Cs must follow three or more as – here we’ve only had one}
 endcase

3: read(sym)
 case sym of
 eos: goto Y {if we get here we’ve read a string of two as which is OK}
 “a”: goto 4
 “b”: goto 6 {we can have a b after two as}
 “c”: goto N {any Cs must follow three or more as – here we’ve only had two}
 endcase

4: read(sym)
 case sym of
 eos: goto Y {if we get here we’ve read a string of three or more as which is OK}
 “a”: goto 4 {we loop here because we allow any number of as ≥ 3}
 “b”: goto N {b can only follow one or two as}
 “c”: goto 5 {cs are OK after three or more as}
 endcase

5: read(sym)
 case sym of
 eos: goto Y {if we get here we’ve read ≥ 3 as followed by ≥ 1 cs which is OK}
 “a”: goto N {as after cs are not allowed}
 “b”: goto N {bs are only allowed after one or two as}
 “c”: goto 5 {we loop here because we allow any number of cs after ≥ 3 as}
 endcase

6: read(sym)
 case sym of
 eos: goto Y {we get here if we’ve read 1 or 2 as followed by ≥ 1 bs – OK}
 “a”: goto N {no as allowed after bs}
There are several ways of specifying rules to generate sentences of a language. One popular form is the syntax diagram. Such diagrams are often used to show the structure of programming languages, and thus inform you how to write syntactically correct programs (syntax is considered in more detail in Chapter 3).

Figure 2.5 shows a syntax diagram for the top level syntax of the Pascal “program” construct.

The diagram in Figure 2.5 tells us that the syntactic element called a “program” consists of

- the string “PROGRAM” (entities in rounded boxes and circles represent actual strings that are required at a given point),

followed by something called

- an “identifier” (entities in rectangles are those which need elaborating in some way that is specified in a further definition),

followed by

- an open bracket “(“,

followed by

- a list of one or more “identifiers”, in which every one except the last is followed by a comma, “,”, followed by a semi-colon, “;”,

followed by

- a close bracket “)”.

![Syntax diagram for the Pascal construct “program”](image)

Figure 2.5 Syntax diagram for the Pascal construct “program”.

<table>
<thead>
<tr>
<th>Table 2.4 (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“b”: goto 6</td>
</tr>
<tr>
<td>{we loop here because we allow any number of bs after 1 or 2 as}</td>
</tr>
<tr>
<td>“c”: goto N</td>
</tr>
<tr>
<td>{no cs are allowed after bs}</td>
</tr>
</tbody>
</table>

| “c”: goto N |
| endcase |
| |
| Y: write(“yes”) |
| goto E |
| N: write(“no”) |
| goto E |
| E: {end of program} |

<table>
<thead>
<tr>
<th>Table 2.4 (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“b”: goto 6</td>
</tr>
<tr>
<td>{we loop here because we allow any number of bs after 1 or 2 as}</td>
</tr>
<tr>
<td>“c”: goto N</td>
</tr>
<tr>
<td>{no cs are allowed after bs}</td>
</tr>
</tbody>
</table>

| “c”: goto N |
| endcase |
| |
| Y: write(“yes”) |
| goto E |
| N: write(“no”) |
| goto E |
| E: {end of program} |

22 2. Elements of Formal Languages
followed by
 something called a “block”,
followed by
 a full stop, “.”.
In Figure 2.6 we see the syntax diagram for the entity “identifier”.
 Figure 2.6 shows us that an “identifier” consists of a letter followed by zero or
more letters and/or digits.
 The following fragment of Pascal:

```
program calc(input, output, infile26, outfile23);
```

associates with the syntax diagram for “program” as shown in Figure 2.7.
 Of course, the diagrams in Figures 2.5 and 2.6, together with all of the
other diagrams defining the syntax of Pascal, cannot tell us how to write a
program to solve a given problem. That is a semantic consideration, relating
to the meaning of the program text, not only its form. The diagrams merely
describe the syntactic structure of constructs belonging to the Pascal
language.

![Figure 2.6 Syntax diagram for a Pascal “identifier”.

![Figure 2.7 How a syntax diagram describes a Pascal statement.](image)
An alternative method of specifying the syntax of a programming language is to use a notation called Backus-Naur form (BNF). Table 2.5 presents a BNF version of our syntax diagrams from above.

The meaning of the notation in Table 2.5 should be reasonably clear when you see its correspondence with syntax diagrams, as shown in Figure 2.8.

Formalisms such as syntax diagrams and BNF are excellent ways of defining the syntax of a language. If you were taught to use a programming language, you may never have looked at a formal definition of its syntax. Analogously, you probably did not learn your own “natural” language by studying a book describing its grammar. However, many programming languages are similar to each other in many respects, and learning a subsequent programming language is made easier if the syntax is clearly defined. Syntax descriptions can also be useful for refreshing your memory about the syntax of a programming language with which you are familiar, particularly for types of statements you rarely use.

<table>
<thead>
<tr>
<th>Table 2.5</th>
<th>BNF version of Figures 2.5 and 2.6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\langle \text{program} \rangle :::= \langle \text{program heading} \rangle \langle \text{block} \rangle.]</td>
<td></td>
</tr>
<tr>
<td>[\langle \text{program heading} \rangle := \text{program} \langle \text{identifier} \rangle { \langle \text{identifier} \rangle { , \langle \text{identifier} \rangle } }.]</td>
<td></td>
</tr>
<tr>
<td>[\langle \text{identifier} \rangle :::= \langle \text{letter} \rangle { \langle \text{letter or digit} \rangle }.]</td>
<td></td>
</tr>
<tr>
<td>[\langle \text{letter or digit} \rangle :::= \langle \text{letter} \rangle</td>
<td>\langle \text{digit} \rangle]</td>
</tr>
</tbody>
</table>

An alternative method of specifying the syntax of a programming language is to use a notation called Backus-Naur form (BNF). The formalism we describe here is actually Extended BNF (EBNF). The original BNF did not include the repetition construct found in Table 2.5.

Figure 2.8 How syntax diagrams and BNF correspond.
If you want to see how concisely a whole programming language can be described in BNF, see the original definition of the Pascal language, from where the above Pascal syntax diagrams and BNF descriptions were obtained. The BNF definitions for the whole Pascal language are presented in only five pages.

2.6 Formal Grammars

A grammar is a set of rules for generating strings. The grammars we will use in the remainder of this book are known as phrase structure grammars (PSGs). Here, our formal definitions will be illustrated by reference to the following grammar:

\[
\begin{align*}
S & \rightarrow aS \mid bB \\
B & \rightarrow bB \mid bC \mid cC \\
C & \rightarrow cC \mid c.
\end{align*}
\]

In order to use our grammar, we need to know something about the status of the symbols that we have used. Table 2.6 provides an informal description of the symbols that appear in grammars such as the one above.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Name and meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, B, C</td>
<td>non-terminal symbols</td>
</tr>
<tr>
<td>S</td>
<td>start symbol, special non-terminal, called a start, or sentence, symbol</td>
</tr>
<tr>
<td>a, b, c</td>
<td>terminal symbols: only these symbols can appear in sentences</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>production arrow</td>
</tr>
<tr>
<td>S \rightarrow aS \mid bB</td>
<td>production rule, usually called simply a production (or sometimes we’ll just use the word rule). Means “S produces aS”, or “S can be replaced by aS”. The string to the left of \rightarrow is called the left-hand side of the production, the string to the right of \rightarrow is called the right-hand side.</td>
</tr>
</tbody>
</table>
| B \rightarrow bB \mid bC \mid cC | [BNF: the symbol “::=”]
| C \rightarrow cC \mid c | [BNF: things in angled brackets e.g. <identifier>]

2 Jensen and Wirth (1975) – see Further Reading section.
2.6.1 Grammars, Derivations and Languages

Table 2.7 presents an informal description, supported by examples using our grammar above, of how we use a grammar to generate a sentence.

As you can see from Table 2.7, there is often a choice as to which rule to apply at a given stage. For example, when the resulting string was aaS, we could have applied the rule $S \rightarrow aS$ as many times as we wished (adding another a each time). A similar observation can be made for the applicability of the $C \rightarrow cC$ rule when the resulting string was $aabcC$, for example.

Here are some other strings we could create, by applying the rules in various ways:

\[
abcc,
\]
\[
bbbbc,
\]
\[
\text{and}
\]
\[
a^{3}b^{2}c^{5}.
\]

You may like to see if you can apply the rules yourself to create the above strings. You must always begin with a rule that has S on its left-hand side (that is why S is called the start symbol).

We write down the S symbol to start the process, and we merely repeat the process described in Table 2.7 as

if a substring of the resulting string matches the left-hand side of one or more productions, replace that substring by the right-hand side of any one of those productions,

until the following becomes true

if the resulting string consists entirely of terminals,

<table>
<thead>
<tr>
<th>Action taken</th>
<th>Resulting string</th>
<th>Production applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start with S, the start symbol</td>
<td>S</td>
<td>$S \rightarrow aS$</td>
</tr>
<tr>
<td>If a substring of the resulting string matches the left-hand side of one or more productions, replace that substring by the right-hand side of any one of those productions</td>
<td>aaS</td>
<td>$S \rightarrow aS$</td>
</tr>
<tr>
<td></td>
<td>$aabB$</td>
<td>$S \rightarrow bB$</td>
</tr>
<tr>
<td></td>
<td>$aabcC$</td>
<td>$B \rightarrow cC$</td>
</tr>
<tr>
<td></td>
<td>$aabccC$</td>
<td>$C \rightarrow cC$</td>
</tr>
<tr>
<td></td>
<td>$aabccc$</td>
<td>$C \rightarrow c$</td>
</tr>
</tbody>
</table>

If the resulting string consists entirely of terminals, then stop.
at which point we:

stop.

You may wonder why the process of matching the substring was not presented as:

if a non-terminal symbol in the resulting string matches the left-hand side of
one or more productions, replace that non-terminal symbol by the right-hand
side of any one of those productions.

This would clearly work for the example grammar given. However, as discussed in
the next section, grammars are not necessarily restricted to having single non-
terminals on the left-hand sides of their productions.

The process of creating strings using a grammar is called deriving them, so when we show how we’ve used the grammar to derive a string (as was done in
Table 2.7), we’re showing a derivation for (or of) that string.

Let us now consider all of the “terminal strings” — strings consisting entirely of
terminal symbols, also known as sentences — that we can use the example grammar to
derive. As this is a simple grammar, it’s not too difficult to work out what they are.

Figure 2.9 shows the choice of rules possible for deriving terminal strings from
the example grammar.

Any “legal” application of our production rules, starting with S, the start
symbol, alone, and resulting in a terminal string, would involve us in following a
path through the diagram in Figure 2.9, starting in Box 1, passing through Box 2,
and ending up in Box 3. The boxes in Figure 2.9 are annotated with the strings
produced by taking given options in applying the rules. Table 2.8 summarises the
strings described in Figure 2.9.

We now define a set that contains all of the terminal strings (and only those
strings) that can be derived from the example grammar. The set will contain all
strings defined as follows:

A string taken from the set \{a^i b : i \geq 0\} concatenated with a string taken from
the set \{b^j : j \geq 1\} \cup \{b^j c : j \geq 0\} concatenated with a string taken from
the set \{c^k : k \geq 1\}.

The above can be written as:

\[
\{a^i b b^j c^k : i \geq 0, j \geq 1, k \geq 1\} \cup \{a^i b^j c c^k : i \geq 0, j \geq 0, k \geq 1\}.
\]

Observe that $b b^j, j \geq 1$ is the same as $b^j, j \geq 2$, and $b b^j, j \geq 0$ is the same as $b^j, j \geq 1$, and $c c^k, k \geq 1$ is the same as $c^k, k \geq 2$ so we could write:

\[
\{a^i b^j c^k : i \geq 0, j \geq 2, k \geq 1\} \cup \{a^i b^j c^k : i \geq 0, j \geq 1, k \geq 2\}.
\]
This looks rather complicated, but essentially there is only one awkward case, which is that if there is only one \(b \) then there must be 2 or more \(c \)s (any more than 1 \(b \) and we can have 1 or more \(c \)s). So we could have written:

\[
\{a^i b^j c^k : i \geq 0, j \geq 1, k \geq 1, \text{if } j = 1 \text{ then } k \geq 2 \text{ else } k \geq 1\}.
\]
Whichever way we write the set, one point should be made clear: the set is a set of strings formed from symbols in the alphabet \(\{a, b, c\} \), that is to say, the set is a \textit{formal language}.

2.6.2 The Relationship between Grammars and Languages

We are now ready to give an intuitive definition of the relationship between grammars and languages:

The \textit{language generated by a grammar} is the set of all \textit{terminal strings} that can be \textit{derived} using the \textit{productions} of that grammar, each derivation beginning with the \textit{start symbol} of that grammar.

Our example grammar, when written like this:

\[
S \rightarrow aS \mid bB \\
B \rightarrow bB \mid bC \mid cC \\
C \rightarrow cC \mid c
\]

is not fully defined. A grammar is fully defined when we know which symbols are terminals, which are non-terminals, and which of the non-terminals is the start symbol. In this book, we will usually see only the productions of a grammar, and we will assume the following:

\[
\text{Table 2.8 The language generated by a grammar.}
\]
• capitalised letters are \textit{non-terminal symbols}
• non-capitalised letters are \textit{terminal symbols}
• the capital letter S is the \textit{start symbol}.

The above will always be the case unless explicitly stated otherwise.

\section*{2.7 Phrase Structure Grammars and the Chomsky Hierarchy}

The production rules of the example grammar from the preceding section are simple in format. For example, the left-hand sides of all the productions consist of lone non-terminals. As we see later in the book, restricting the form of productions allowed in a grammar in certain ways simplifies certain language processing tasks, but it also reduces the sophistication of the languages that such grammars can generate. For now, we will define a scheme for classifying grammars according to the “shape” of their productions which will form the basis of our subsequent discussion of grammars and languages. The classification scheme is called the Chomsky hierarchy, named after Noam Chomsky, an influential American linguist.

\subsection*{2.7.1 Formal Definition of Phrase Structure Grammars}

To prepare for specifying the Chomsky hierarchy, we first need to precisely define the term \textit{phrase structure grammar} (PSG). Table 2.9 does this.

Formally, then, a PSG, G, is specified as (N, T, P, S). This is what mathematicians call a “tuple” (of four elements).

The definition in Table 2.9 makes it clear that the empty string, ε, cannot appear alone on the left-hand side of any of the productions of a PSG. Moreover, the definition tells us that ε is allowed on the right-hand side. Otherwise, any strings of terminals and/or non-terminals can appear on either side of productions. However, in most grammars we usually find that there are one or more non-terminals on the \textit{left-hand side} of each production.

As we always start a derivation with a lone S (the \textit{start symbol}), for a grammar to derive anything it must have at least one production with S alone on its left-hand side. This last piece of information is not specified in the definition above, as there is nothing in the formal definition of PSGs that says they \textit{must} generate
2.7 Phrase Structure Grammars and the Chomsky Hierarchy

Table 2.9 The formal definition of a phrase structure grammar.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>a set of non-terminal symbols</td>
</tr>
<tr>
<td>T</td>
<td>a set of terminal symbols</td>
</tr>
<tr>
<td>P</td>
<td>a set of production rules of the form</td>
</tr>
<tr>
<td></td>
<td>$x \rightarrow y$, where</td>
</tr>
<tr>
<td></td>
<td>$x \in (N \cup T)^+$, and</td>
</tr>
<tr>
<td></td>
<td>$y \in (N \cup T)^*$</td>
</tr>
<tr>
<td>S</td>
<td>a member of N, designated as the start, or sentence symbol</td>
</tr>
</tbody>
</table>

Any PSG, G, consists of the following:

- N: a set of non-terminal symbols. An alphabet, containing no symbols that can appear in sentences.
- T: a set of terminal symbols. Also an alphabet, containing only symbols that can appear in sentences.
- P: a set of production rules of the form $x \rightarrow y$, where $x \in (N \cup T)^+$, and $y \in (N \cup T)^*$.
- S: a member of N, designated as the start, or sentence symbol.

Table 2.10 The (N, T, P, S) form of a grammar.

<table>
<thead>
<tr>
<th>Productions</th>
<th>(N, T, P, S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow aB$</td>
<td>${S, B, C}$, ${-} - - - N$</td>
</tr>
<tr>
<td>$A \rightarrow aS$</td>
<td>${a, b, c}$, ${-} - - - T$</td>
</tr>
<tr>
<td>$B \rightarrow bB$</td>
<td>${S \rightarrow aS, S \rightarrow bB, B \rightarrow bB, B \rightarrow bC}$, ${-} - - - P$</td>
</tr>
<tr>
<td>$C \rightarrow cC$</td>
<td>${S \rightarrow cC, C \rightarrow cC, C \rightarrow c}$, ${-} - - - S$</td>
</tr>
</tbody>
</table>

2.7.2 Derivations, Sentential Forms, Sentences and “L(G)”

We have formalised the definition of a phrase structure grammar (PSG). We now formalise our notion of derivation, and introduce some useful terminology to support subsequent discussion. To do this, we consider a new grammar:

$$S \rightarrow aB \mid bA \mid \varepsilon$$

$$A \rightarrow aS \mid bAA$$

$$B \rightarrow bS \mid aBB.$$

Table 2.10 The (N, T, P, S) form of a grammar.
Using the conventions outlined earlier, we know that S is the start symbol, \{S, A, B\} is the set of non-terminals (N), and \{a, b\} is the set of terminals (T). So we need not provide the full (N, T, P, S) definition of the grammar.

As in our earlier example, the left-hand sides of the above productions all consist of single non-terminals. We see an example grammar that differs from this later in the chapter.

Here is a string in $(N \cup T)^+$ that the above productions can be used to derive, as you might like to verify for yourself:

$$abbbaSA.$$

This is not a terminal string, since it contains non-terminals (S and A). Therefore it is not a sentence. The next step could be, say, to apply the production $A \rightarrow bAA$, which would give us

$$abbbaSbAA,$$

which is also not a sentence.

We now have two strings, $abbbaSA$ and $abbbaSbAA$ that are such that the former can be used as a basis for the derivation of the latter by the application of one production rule of the grammar. This is rather a mouthful, even if we replace “by the application of one production rule of the grammar” by the phrase “in one step”, so we introduce a symbol to represent this relationship. We write:

$$abbbaSA \Rightarrow abbbaSbAA.$$

To be absolutely correct, we should give our grammar a name, say G, and write

$$abbbaSA \Rightarrow^G abbbaSbAA$$

to denote which particular grammar is being used. Since it is usually clear in our examples which grammar is being used, we will simply use \Rightarrow. We now use this symbol to show how our example grammar derives the string $abbbaSbAA$:

$$S \Rightarrow aB$$
$$aB \Rightarrow abS$$
$$abS \Rightarrow abbA$$
$$abbA \Rightarrow abbbAA$$
$$abbAA \Rightarrow abbbaSA$$
$$abbbaSA \Rightarrow abbbaSbAA$$
As it is tedious to write out each intermediate stage twice, apart from the first \((S)\) and the last \((abbbaSbAA)\), we allow an abbreviated form of such a derivation as follows:

\[
S \Rightarrow aB \Rightarrow abS \Rightarrow abbA \Rightarrow abbaAA \Rightarrow abbaSA \Rightarrow abbaSbAA.
\]

We now use our new symbol as the basis of some additional useful notation, as shown in Table 2.11.

A new term is now introduced to simplify references to the intermediate stages in a derivation. We call these intermediate stages **sentential forms**. Formally, given any grammar, \(G\), a **sentential form** is any string that can be derived in zero or more steps from the start symbol, \(S\). By “any string”, we mean exactly that; not only terminal strings, but any string of terminals and/or non-terminals. Thus, a **sentence is a sentential form**, but a **sentential form is not necessarily a sentence**. Given the simple grammar

\[
S \rightarrow aS | a,
\]

some sentential forms are: \(S\), \(aaaaaaS\) and \(a^{10}\). Only one of these sentential forms \((a^{10})\) is a sentence, as it’s the only one that consists entirely of terminal symbols.

Formally, using our new notation,

Table 2.11 Useful notation for discussing derivations, and some example true statements for the grammar:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
<th>Example true statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \Rightarrow y)</td>
<td>the application of one production rule results in the string (x) becoming the string (y) also expressed as “(x) generates (y) in one step”, or “(x) produces (y) in one step”, or “(y) is derived from (x) in one step”</td>
<td>(aB \Rightarrow abS) (S \Rightarrow \epsilon) (abbaSA \Rightarrow abba\ SbAA)</td>
</tr>
<tr>
<td>(x \Rightarrow^* y)</td>
<td>(x) generates (y) in zero or more steps, or just “(x) generates (y)”, or “(x) produces (y)”, or “(y) is derived from (x)”</td>
<td>(S \Rightarrow^* S) (S \Rightarrow^* abbaSA) (aB \Rightarrow^* abba aa)</td>
</tr>
<tr>
<td>(x \Rightarrow^+ y)</td>
<td>(x) generates (y) in one or more steps, or just “(x) generates (y)”, or “(x) produces (y)”, or “(y) is derived from (x)”</td>
<td>(S \Rightarrow^+ abbaSA) (abba\ SbAA \Rightarrow^+ abbabaa)</td>
</tr>
</tbody>
</table>
if \(S \Rightarrow^* x \), then \(x \) is a sentential form.
if \(S \Rightarrow^* x \), and \(x \) is a terminal string, then \(x \) is a _sentence_.

We now formalise a definition given earlier, this being the statement that

the language generated by a grammar is the set of all terminal strings that can be derived using the productions of that grammar, each derivation beginning with the start symbol of that grammar.

Using various aspects of the notation introduced in this chapter, this becomes:

Given a PSG, \(G, L(G) = \{ x : x \in T^* \text{ and } S \Rightarrow^* x \} \).

(Note that the definition assumes that we have specified the set of terminals and the start symbol of the grammar, which as we said earlier is done implicitly in our examples.)

So, if \(G \) is some PSG, \(L(G) \) means _the language generated by \(G \)_. As the set definition of \(L(G) \) clearly states, the set \(L(G) \) contains all of the terminal strings generated by \(G \), but only the strings that \(G \) generates. It is very important to realise that this is what it means when we say _the language generated by the grammar_.

We now consider three examples, to reinforce these notions. The first is an example grammar encountered above, now labelled \(G_1 \):

\[
S \rightarrow aS \mid bB \\
B \rightarrow bB \mid bC \mid cC \\
C \rightarrow cC \mid c.
\]

We have already provided a set definition of \(L(G_1) \); it was:

\[L(G_1) = \{ a^i b^j c^k : i \geq 0, j \geq 1, k \geq 1, \text{ if } j = 1 \text{ then } k \geq 2 \text{ else } k \geq 1 \}. \]

Another grammar we have already encountered, which we now call \(G_2 \), is:

\[
S \rightarrow aBj \mid bA \mid \varepsilon \\
A \rightarrow aS \mid bAA \\
B \rightarrow bS \mid aBB.
\]

This is more complex than \(G_1 \), in the sense that some of \(G_2 \)’s productions have more than one non-terminal on their right-hand sides.

\[L(G_2) = \{ x : x \in \{ a, b \}^* \text{ and the number of } a \text{ in } x \text{ equals the number of } b \text{ in } x \}. \]
I leave it to you to establish that the above statement is true.

Note that \(L(G_2) \) is not the same as a set that we came across earlier, i.e.

\[
\{a^i b^i : i \geq 1\},
\]

which we will call set \(A \). In fact, set \(A \) is a proper subset of \(L(G_2) \). \(G_2 \) can generate all of the strings in \(A \), but it generates many more besides (such as \(\varepsilon, bbabbbaaaaab, \) and so on). A grammar, \(G_3 \), such that \(L(G_3) = A \) is:

\[
S \rightarrow ab | aSb.
\]

2.7.3 The Chomsky Hierarchy

This section describes a classification scheme for PSGs, and the corresponding phrase structure languages (PSLs) that they generate, which is of the utmost importance in determining certain of their computational features. PSGs can be classified in a hierarchy, the location of a PSG in that hierarchy being an indicator of certain characteristics required by a decision program for the corresponding language. We saw above how one example language could be processed by an extremely simple decision program. Much of this book is devoted to investigating the computational nature of formal languages. We use as the basis of our investigation the classification scheme for PSGs and PSLs called the Chomsky hierarchy.

Classifying a grammar according to the Chomsky hierarchy is based solely on the presence of certain patterns in the productions. Table 2.12 shows how to make the classification. The types of grammar in the Chomsky hierarchy are named types 0 to 3, with 0 as the most general type. Each type from 1 to 3 is defined according to one or more restrictions on the definition of the type numerically preceding it, which is why the scheme qualifies as a hierarchy.

If you are observant, you may have noticed an anomaly in Table 2.12. Context sensitive grammars are not allowed to have the empty string on the right-hand side of productions, whereas all of the other types are. This means that, for example, our grammar \(G_2 \), which can be classified as unrestricted and as context free (but not as regular), cannot be classified as context sensitive. However, every grammar that can be classified as regular can be classified as context free, and every grammar that can be classified as context free can be classified as unrestricted.
Table 2.12 The Chomsky hierarchy.

<table>
<thead>
<tr>
<th>Type</th>
<th>Type name</th>
<th>Patterns to which ALL productions must conform</th>
<th>Informal description and examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unrestricted</td>
<td>$x \to y, x \in (N \cup T)^+, \quad y \in (N \cup T)^+$</td>
<td>The definition of PSGs we have already seen. Anything allowed on the left-hand side (except for e), anything allowed on the right. All of our example grammars considered so far conform to this.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example type 0 production: $aXypq \to aZpq$ (all productions of G_1, G_2 and G_3 conform – but see below).</td>
</tr>
<tr>
<td>1</td>
<td>context sensitive</td>
<td>$x \to y, x \in (N \cup T)^+, \quad y \in (N \cup T)^+,$ $</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example type 1 production: $aXypq \to aZwpq$ (all productions of G_1 and G_3 conform, but not all of those of G_2 do).</td>
</tr>
<tr>
<td>2</td>
<td>context free</td>
<td>$x \to y, x \in N,$ $y \in (N \cup T)^+$</td>
<td>Single non-terminal on left, any mixture of terminals and/or non-terminals on the right. Also, e is allowed on the right.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example type 2 production: $X \to XapZQ$ (all productions of $G_1, G_2, and G_3$ conform).</td>
</tr>
<tr>
<td>3</td>
<td>regular</td>
<td>$w \to x,$ or $w \to yz,$ $w \in N,$ $x \in T \cup {e},$ $y \in T,$ $z \in N$</td>
<td>Single non-terminal on left, and either e or a single terminal, or a single terminal followed by a single non-terminal, on the right.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example type 3 productions: $P \to pQ,$ $F \to a$ all of the productions of G_1 conform to this, but G_2 and G_3 do not.</td>
</tr>
</tbody>
</table>

When classifying a grammar according to the Chomsky hierarchy, you should remember the following:

For a grammar to be classified as being of a certain type, each and every production of that grammar must match the pattern specified for productions of that type.
Which means that the following grammar:

\[
S \rightarrow aS \mid aA \mid AA \\
A \rightarrow aA \mid a,
\]

is classified as \textit{context free}, since the production \(S \rightarrow AA\) does not conform to the pattern for regular productions, even though all of the other productions do.

So, given the above rule that all productions must conform to the pattern, you classify a grammar, \(G\), according to the procedure in Table 2.13.

Table 2.13 tells us to begin by attempting to classify \(G\) according to the most restricted type in the hierarchy. This means that, as indicated by Table 2.12, \(G_1\) is a \textit{regular} grammar, and \(G_2\) and \(G_3\) are \textit{context free} grammars. Of course, we know that as all regular grammars are context free grammars, \(G_1\) is also context free. Similarly, we know that they can all be classified as unrestricted. But we make the classification as specific as possible.

From the above, it can be seen that classifying a PSG is done simply by seeing if its productions match a given pattern. As we already know, grammars generate languages. In terms of the Chomsky hierarchy, a language is of a given type if it is generated by a grammar of that type. So, for example,

\[
\{a^i b^j : i \geq 1\} \quad \text{(set \(A\) mentioned above)}
\]

is a context free language, since it is generated by \(G_3\), which is classified as a context free grammar. However, how can we be sure that there is not a \textit{regular grammar} that could generate \(A\)? We see later on that the more restricted the language (in the Chomsky hierarchy), the simpler the decision program for the language. It is therefore useful to be able to define the simplest possible type of grammar
for a given language. In the meantime, you might like to see if you can create a regular grammar to generate set A (clue: do not devote too much time to this!).

From a theoretical perspective, the immediately preceding discussion is very important. If we can establish that there are languages that can be generated by grammars at some level of the hierarchy and cannot be generated by more restricted grammars, then we are sure that we do indeed have a genuine hierarchy. However, there are also practical issues at stake, for as mentioned above, and discussed in more detail in Chapters 4, 5 and 7, each type of grammar has associated with it a type of decision program, in the form of an abstract machine. The more restricted a language is, the simpler the type of decision program we need to write for that language.

In terms of the Chomsky hierarchy, our main interest is in context free languages, as it turns out that the syntactic structure of most programming languages is represented by context free grammars. The grammars and languages we have looked at so far in this book have all been context free (remember that any regular grammar or language is, by definition, also context free).

2.8 A Type 0 Grammar: Computation as Symbol Manipulation

We close this chapter by considering a grammar that is more complex than our previous examples. The grammar, which we label G_4, has productions as follows (each row of productions has been numbered, to help us to refer to them later).

\begin{align*}
S &\rightarrow AS | AB & (1) \\
B &\rightarrow BB | C & (2) \\
AB &\rightarrow HXNB & (3) \\
NB &\rightarrow BN & (4) \\
BM &\rightarrow MB & (5) \\
NC &\rightarrow Mc & (6) \\
Nc &\rightarrow Mcc & (7) \\
XMBB &\rightarrow BXNB & (8) \\
XBMc &\rightarrow Bc & (9) \\
AH &\rightarrow HA & (10) \\
H &\rightarrow a & (11) \\
B &\rightarrow b & (12)
\end{align*}
G_4 is a type 0, or unrestricted grammar. It would be context sensitive, but for the production $XBMc \rightarrow Bc$, which is the only production with a right-hand side shorter than its left-hand side.

Table 2.14 represents the derivation of a particular sentence using this grammar. It is presented step by step. Each sentential form, apart from the *sentence* itself, is followed by the number of the row in G_4 from which the production used to achieve the next step was taken. Table 2.14 should be read row by row, left to right.

The sentence derived is $a^2b^3c^6$. Notice how, in Table 2.14, the grammar replaces each A in the sentential form $AABBBC$ by H, and each time it does this it places one c at the rightmost end for each B. Note also how the grammar uses non-terminals as “markers” of various types:

- H is used to replace the As that have been accounted for
- X is used to indicate how far along the Bs we have reached
- N is used to move right along the Bs, each time ending in a c being added to the end of the sentential form
- M is used to move left back along the Bs.

You may also notice that at many points in the derivation several productions are applicable. However, many of these productions lead eventually to “dead ends”, i.e., sentential forms that cannot lead eventually to sentences.

<table>
<thead>
<tr>
<th>STAGE</th>
<th>row</th>
<th>STAGE</th>
<th>row</th>
<th>STAGE</th>
<th>row</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(1)</td>
<td>AS</td>
<td>(1)</td>
<td>ABB</td>
<td>(2)</td>
</tr>
<tr>
<td>$AABB$</td>
<td>(2)</td>
<td>$AABB$</td>
<td>(2)</td>
<td>$AABBBBC$</td>
<td>(3)</td>
</tr>
<tr>
<td>$AHXNBBBC$</td>
<td>(4)</td>
<td>$AHXNBBBC$</td>
<td>(4)</td>
<td>$AHXBBBNC$</td>
<td>(4)</td>
</tr>
<tr>
<td>$AHXBBBNC$</td>
<td>(6)</td>
<td>$AHXBBBMc$</td>
<td>(5)</td>
<td>$AHXBBBMc$</td>
<td>(5)</td>
</tr>
<tr>
<td>$AHXMBBSc$</td>
<td>(5)</td>
<td>$AHXMBBSc$</td>
<td>(8)</td>
<td>$AHXMBBSc$</td>
<td>(4)</td>
</tr>
<tr>
<td>$AHBXBNCc$</td>
<td>(4)</td>
<td>$AHBXBNCc$</td>
<td>(7)</td>
<td>$AHBXBNCc$</td>
<td>(5)</td>
</tr>
<tr>
<td>$AHBXBNCc$</td>
<td>(5)</td>
<td>$AHBXBNCc$</td>
<td>(8)</td>
<td>$AHBXBNCc$</td>
<td>(4)</td>
</tr>
<tr>
<td>$AHBBXNc$</td>
<td>(7)</td>
<td>$AHBBXNc$</td>
<td>(9)</td>
<td>$AHBBXNc$</td>
<td>(10)</td>
</tr>
<tr>
<td>$HABBBccc$</td>
<td>(3)</td>
<td>$HABBBccc$</td>
<td>(4)</td>
<td>$HABBBccc$</td>
<td>(4)</td>
</tr>
<tr>
<td>$HHXBBBccc$</td>
<td>(4)</td>
<td>$HHXBBBccc$</td>
<td>(7)</td>
<td>$HHXBBBccc$</td>
<td>(5)</td>
</tr>
<tr>
<td>$HHXBBBccc$</td>
<td>(5)</td>
<td>$HHXBBBccc$</td>
<td>(5)</td>
<td>$HHXMBBccc$</td>
<td>(8)</td>
</tr>
<tr>
<td>$HHBXBNccc$</td>
<td>(4)</td>
<td>$HHBXBNccc$</td>
<td>(4)</td>
<td>$HHBXBNccc$</td>
<td>(7)</td>
</tr>
<tr>
<td>$HHBXBBccc$</td>
<td>(5)</td>
<td>$HHBXBBccc$</td>
<td>(5)</td>
<td>$HHBXBBccc$</td>
<td>(8)</td>
</tr>
<tr>
<td>$HHBXBBccc$</td>
<td>(4)</td>
<td>$HHBXBBccc$</td>
<td>(7)</td>
<td>$HHBXBBccc$</td>
<td>(9)</td>
</tr>
<tr>
<td>$HHBBBccc$</td>
<td>(11)</td>
<td>$HHBBBccc$</td>
<td>(11)</td>
<td>$HHBBBccc$</td>
<td>(12)</td>
</tr>
<tr>
<td>$aabBccc$</td>
<td>(12)</td>
<td>$aabBccc$</td>
<td>(12)</td>
<td>$aabBccc$</td>
<td>(12)</td>
</tr>
</tbody>
</table>
The language generated by G_4, i.e. $L(G_4)$, is $\{a^ib^jc^i \times j; i, j \geq 1\}$. This is the set:

“all strings of the form one or more as followed by one or more bs followed by cs in which the number of cs is the number of as multiplied by the number of bs”.

You may wish to convince yourself that this is the case.

G_4 is rather a complicated grammar compared to our earlier examples. You may be wondering if there is a simpler type of grammar, perhaps a context free grammar, that can do the same job. In fact there is not. However, while the grammar is comparatively complex, the method it embodies in the generation of the sentences is quite simple. Essentially, like all grammars, it simply replaces one string by another at each stage in the derivation.

An interesting way of thinking about G_4 is in terms of it performing a kind of computation. Once a sentential form like $A'B'C$ is reached, the productions then ensure that $i \times j$ cs are appended to the end by essentially modelling the simple algorithm in Table 2.15.

The question that arises is: what range of computational tasks can we carry out using such purely syntactic transformations? We see from our example that the type 0 grammar simply specifies string substitutions. If we take our strings of as and bs as representing numbers, so that, say, a^6 represents the number 6, we see that G_4 is essentially a model of a process for multiplying together two arbitrary length numbers.

Later in this book, we encounter an abstract machine, called a Turing machine, that specifies string operations, each operation involving the replacing of only one symbol by another, and we see that the machine is actually as powerful as the type 0 grammars. Indeed, the machine is capable of performing a wider range of computational tasks than even the most powerful real computer.

However, we will not concern ourselves with these issues until later. In the next chapter, we encounter more of the fundamental concepts of formal languages: syntax, semantics and ambiguity.

Table 2.15 The “multiplication” algorithm embodied in grammar G_4.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>for each A do</td>
<td></td>
</tr>
<tr>
<td>for each B do</td>
<td>put a c at the end of the sentential form</td>
</tr>
<tr>
<td>endfor</td>
<td></td>
</tr>
<tr>
<td>endfor</td>
<td></td>
</tr>
</tbody>
</table>
EXERCISES

For exercises marked “†”, solutions, partial solutions, or hints to get you started appear in “Solutions to Selected Exercises” at the end of the book.

2.1. Classify the following grammars according to the Chomsky hierarchy. In all cases, briefly justify your answer.

(a) †

\[
S \rightarrow aA \\
A \rightarrow aS | aB \\
B \rightarrow bC \\
C \rightarrow bD \\
D \rightarrow b | bB
\]

(b) †

\[
S \rightarrow aS | aAb \\
A \rightarrow \varepsilon | aAb
\]

(c)

\[
S \rightarrow XYZ | aB \\
B \rightarrow PQ | S \\
Z \rightarrow aS
\]

(d)

\[
S \rightarrow \varepsilon
\]

2.2. † Construct set definitions of each of the languages generated by the four grammars in exercise 1.

Hint: the language generated by 1(c) is not the same as that generated by 1(d), as one of them contains no strings at all, whereas the other contains exactly one string.

2.3. † It was pointed out above that we usually insist that one or more non-terminals must be included in the left-hand side of type 0 productions. Write down a formal expression representing this constraint. Assume that \(N \) is the set of non-terminals, and \(T \) the set of terminals.

2.4. Construct regular grammars, \(G_v, G_w \) and \(G_x \), such that

(a) \(L(G_v) = \{ c^j : j > 0, \text{ and } j \text{ does not divide exactly by } 3 \} \)

(b) \(L(G_w) = \{ a^i b^i c^j d^k : i, k \geq 0, 0 \leq j \leq 1 \} \)
Note: as we are dealing only with whole numbers, the expression 0 \leq j \leq 1, which is short for 0 \leq j and j \leq 1, is the same as writing: j = 0 or j = 1.

(c) \(L(G_w) = \{ a, b, c \}^* \)

2.5. Use your answer to exercise 4(c) as the basis for sketching out an intuitive justification that \(A^* \) is a regular language, for any alphabet, \(A \).

2.6. Use the symbol \(\Rightarrow \) in showing the step-by-step derivation of the string \(c^5 \) using

(a) \(G_v \)

and

(b) \(G_z \) from exercise 4.

2.7. Construct context free grammars, \(G_y \) and \(G_z \), such that

(a) \(L(G_y) = \{ a^{2i+1} c b^{2i+1} : i \geq 0, \ 0 \leq j \leq 1 \} \)

Note: if \(i \geq 0 \), \(a^{2i+1} \) means “all odd numbers of as”.

(b) \(L(G_z) = \) all Boolean expressions in your favourite programming language. (Boolean expressions are those that use logical operators such as “and”, “or” and “not”, and evaluate to true or false.)

2.8. Use the symbol \(\Rightarrow \) in showing the step-by-step derivation of \(a^3 b^3 \) using

(a) \(G_y \) from exercise 7, and the grammar

(b) \(G_z \) from Chapter 2, i.e. \(S \rightarrow ab \mid aSb \)

2.9. Provide a regular grammar to generate the language \(\{ ab, abc, cd \} \).

Hint: make sure your grammar generates only the three given strings, and no others.

2.10. Use your answer to exercise 9 as the basis for sketching out an intuitive justification that any finite language is regular.

Note that the converse of the above statement, i.e. that every regular language is finite, is certainly not true. To appreciate this, consider the languages specified in exercise 4. All three languages are both regular and infinite.
A Concise Introduction to Languages and Machines
Parkes, A.P.
2008, XIV, 346 p. 196 illus., Softcover
ISBN: 978-1-84800-120-6