Contents

Part I Overview of Consensus Algorithms in Cooperative Control

1 Overview of Consensus Algorithms in Cooperative Control 3
1.1 Introduction .. 3
1.2 Literature Review: Consensus Algorithms 6
1.2.1 Fundamental Consensus Algorithms 7
1.2.2 Convergence Analysis of Consensus Algorithms 9
1.2.3 Synthesis and Extensions of Consensus Algorithms ... 15
1.2.4 Design of Coordination Strategies via Consensus Algorithms 17
1.3 Monograph Overview 21
1.4 Notes .. 22

Part II Consensus Algorithms for Single-integrator Dynamics

2 Consensus Algorithms for Single-integrator Dynamics 25
2.1 Fundamental Algorithms 25
2.2 Consensus Under Fixed Interaction Topologies 28
2.2.1 Consensus Using a Continuous-time Algorithm 28
2.2.2 Consensus Using a Discrete-time Algorithm 38
2.3 Consensus Under Dynamically Changing Interaction Topologies 42
2.3.1 Consensus Using a Continuous-time Algorithm 45
2.3.2 Consensus Using a Discrete-time Algorithm 49
2.3.3 Simulation Results 50
2.4 Notes .. 52

3 Consensus Tracking with a Reference State 55
3.1 Problem Statement 55
3.2 Constant Consensus Reference State 56
3.3 Time-varying Consensus Reference State 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Fundamental Consensus Tracking Algorithm</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Consensus Tracking Algorithm with Bounded Control Inputs</td>
<td>66</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Information Feedback to the Consensus Reference State</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Extension to Relative State Deviations</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Notes</td>
<td>73</td>
</tr>
</tbody>
</table>

Part III Consensus Algorithms for Double-integrator Dynamics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Consensus Algorithms for Double-integrator Dynamics</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Consensus Algorithm</td>
<td>77</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Convergence Analysis Under Fixed Interaction Topologies</td>
<td>79</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Convergence Analysis Under Switching Interaction Topologies</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Consensus with Bounded Control Inputs</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>Consensus Without Relative State Derivative Measurements</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Notes</td>
<td>103</td>
</tr>
</tbody>
</table>

Part IV Consensus Algorithms for Rigid Body Attitude Dynamics

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Consensus Algorithms for Rigid Body Attitude Dynamics</td>
<td>123</td>
</tr>
<tr>
<td>6.1</td>
<td>Problem Statement</td>
<td>123</td>
</tr>
<tr>
<td>6.2</td>
<td>Attitude Consensus with Zero Final Angular Velocities</td>
<td>124</td>
</tr>
<tr>
<td>6.3</td>
<td>Attitude Consensus Without Absolute and Relative Angular Velocity Measurements</td>
<td>128</td>
</tr>
<tr>
<td>6.4</td>
<td>Attitude Consensus with Nonzero Final Angular Velocities</td>
<td>131</td>
</tr>
<tr>
<td>6.5</td>
<td>Simulation Results</td>
<td>132</td>
</tr>
<tr>
<td>6.6</td>
<td>Notes</td>
<td>134</td>
</tr>
</tbody>
</table>
7 Relative Attitude Maintenance and Reference Attitude Tracking ... 141
7.1 Relative Attitude Maintenance .. 141
 7.1.1 Fixed Relative Attitudes with Zero Final Angular Velocities 141
 7.1.2 Time-varying Relative Attitudes and Angular Velocities 142
7.2 Reference Attitude Tracking .. 143
 7.2.1 Reference Attitude Tracking with Attitudes Represented by Euler Parameters 143
 7.2.2 Reference Attitude Tracking with Attitudes Represented by Modified Rodriguez Parameters 147
7.3 Simulation Results .. 150
7.4 Notes ... 152

Part V Consensus-based Design Methodologies for Distributed Multivehicle Cooperative Control

8 Consensus-based Design Methodologies for Distributed Multivehicle Cooperative Control .. 159
8.1 Introduction ... 159
8.2 Coupling in Cooperative Control Problems .. 161
 8.2.1 Objective Coupling .. 162
 8.2.2 Local Coupling ... 162
 8.2.3 Full Coupling .. 162
 8.2.4 Dynamic Coupling .. 163
8.3 Approach to Distributed Cooperative Control Problems with an Optimization Objective ... 163
 8.3.1 Cooperation Constraints and Objectives .. 164
 8.3.2 Coordination Variables and Coordination Functions 165
 8.3.3 Centralized Cooperation Scheme .. 166
 8.3.4 Consensus Building ... 167
8.4 Approach to Distributed Cooperative Control Problems Without an Optimization Objective ... 169
 8.4.1 Coordination Variable Constituted by a Group-level Reference State 170
 8.4.2 Coordination Variable Constituted by Vehicle States 172
8.5 Literature Review .. 174
 8.5.1 Formation Control .. 174
 8.5.2 Cooperation of Multiple UAVs .. 176
8.6 The Remainder of the Book .. 178
8.7 Notes ... 178
Part VI Applications to Multivehicle Cooperative Control

9 Rendezvous and Axial Alignment with Multiple Wheeled Mobile Robots

- **9.1 Experimental Platform** ... 181
- **9.2 Experimental Implementation** 182
- **9.3 Experimental Results** ... 184
 - **9.3.1 Rendezvous** ... 185
 - **9.3.2 Axial Alignment** ... 188
 - **9.3.3 Lessons Learned** ... 188
- **9.4 Notes** .. 189

10 Distributed Formation Control of Multiple Wheeled Mobile Robots with a Virtual Leader

- **10.1 Distributed Formation Control Architecture** 193
- **10.2 Experimental Results on a Multirobot Platform** 197
 - **10.2.1 Experimental Platform and Implementation** 197
 - **10.2.2 Formation Control with a Single Subgroup Leader** 199
 - **10.2.3 Formation Control with Multiple Subgroup Leaders** ... 200
 - **10.2.4 Formation Control with Dynamically Changing Subgroup Leaders and Interrobot Interaction Topologies** 201
- **10.3 Notes** .. 202

11 Decentralized Behavioral Approach to Wheeled Mobile Robot Formation Maneuvers

- **11.1 Problem Statement** ... 207
- **11.2 Formation Maneuvers** .. 209
- **11.3 Formation Control** ... 211
 - **11.3.1 Coupled Dynamics Formation Control** 211
 - **11.3.2 Coupled Dynamics Formation Control with Passivity-based Interrobot Damping** 214
 - **11.3.3 Saturated Control** 216
- **11.4 Hardware Results** .. 219
- **11.5 Notes** .. 220

12 Deep Space Spacecraft Formation Flying

- **12.1 Problem Statement** ... 225
 - **12.1.1 Reference Frames** .. 226
 - **12.1.2 Desired States for Each Spacecraft** 226
 - **12.1.3 Spacecraft Dynamics** 228
- **12.2 Decentralized Architecture via the Virtual Structure Approach** 228
 - **12.2.1 Centralized Architecture** 228
 - **12.2.2 Decentralized Architecture** 229
- **12.3 Decentralized Formation Control Strategies** 232
Distributed Consensus in Multi-vehicle Cooperative Control
Theory and Applications
Ren, W.; Beard, R.
2008, XV, 319 p. With online files/update., Hardcover
ISBN: 978-1-84800-014-8