Contents

List of Contributors

1 An Effective Approach for Distributed Process Planning
 Enabled by Event-driven Function Blocks ... 1
 Lihui Wang, Hsi-Yung Feng, Ningxu Cai, Wei Jin
 1.1 Introduction ... 1
 1.2 Brief Literature Review ... 2
 1.3 Distributed Process Planning .. 5
 1.3.1 Fundamentals of DPP ... 5
 1.3.2 Basic Requirements .. 6
 1.3.3 System Architecture ... 7
 1.3.4 Enabling Technologies ... 8
 1.4 Decision Solutions for Supervisory Planning 11
 1.4.1 EMF for Machining Process Sequencing 11
 1.4.2 EMF Grouping .. 14
 1.4.3 EMF Sequencing ... 15
 1.4.4 Function Block Design ... 18
 1.5 Setup Merging and Monitoring ... 22
 1.5.1 Setup Merging .. 23
 1.5.2 Detailed Operation Planning .. 25
 1.5.3 Function Block Execution Control and Monitoring 26
 1.6 Conclusions .. 27
 References ... 28

2 Web-based Polishing Process Planning Using
 Data-mining Techniques ... 31
 2.1 Introduction ... 31
 2.2 Literature Review ... 33
 2.2.1 Research Works in Polishing .. 33
 2.2.2 Web Application for Knowledge-based Planning 33
 2.2.3 Case-based Reasoning ... 35
 2.2.4 Fuzzy Modelling ... 35
 2.2.5 Genetic Algorithms ... 36
 2.2.6 GA-Fuzzy Systems ... 36
3 Integration of Rule-based Process Selection with Virtual Machining for Distributed Manufacturing Planning

Dusan N. Sormaz, Jaikumar Arumugam, Chandrasekhar Ganduri

3.1 Introduction .. 61
3.2 IMPlanner Architecture .. 62
3.3 Knowledge-based Process Selection .. 64
 3.3.1 Knowledge Representation .. 64
 3.3.2 Process Selection Rules ... 67
 3.3.3 Knowledge Base/Database ... 71
 3.3.4 Integration of Rule Execution Engine into IMPlanner 72
3.4 Virtual Machining of Milling Operations .. 72
 3.4.1 Geometric Model .. 73
 3.4.2 Kinematic Model .. 74
 3.4.3 Animation Model .. 76
 3.4.4 Virtual Machining Scene Graph ... 78
3.5 Integration Approaches ... 80
 3.5.1 Object Visualisation Paradigm .. 80
 3.5.2 Distributed Approach .. 81
 3.5.3 Integrated Application .. 83
 3.5.4 XML-based Web Distributed Application 83
3.6 Case Study ... 84
3.7 Related Research .. 87
3.8 Conclusions ... 88
References ... 89
4.2.1 Manufacturing-dependent CAD Systems 93
4.2.2 Bidirectionally Coupled CAD Systems 94
4.3 The CyberCut System ... 95
4.3.1 Overview of the CyberCut System ... 95
4.3.2 Definition of Features ... 96
4.4 Architecture .. 98
4.4.1 WebCAD .. 99
4.4.2 Feature Recogniser ... 99
4.4.3 Feature Validation ... 100
4.4.4 Macroplanner and Setup Planner .. 101
4.4.5 Microplanner ... 101
4.4.6 Tool-path Planner ... 104
4.5 Implementation and Results ... 104
4.6 Conclusions .. 106
References.. 107

5 Process Planning, Scheduling and Control for One-of-a-Kind Production ... 109
Paul Dean, Yiliu Tu, Deyi Xue
5.1 Introduction .. 109
5.2 Literature Review ... 113
5.3 Process Planning ... 117
5.3.1 Long-term Process Planning ... 117
5.3.2 Short-term Process Planning ... 118
5.4 Process Control... 125
5.5 Adaptive Planning and Control .. 127
5.6 Long-term Resource Planning .. 131
5.7 Conclusions .. 134
References.. 135

6 Setup Planning and Tolerance Analysis ... 137
Yiming (Kevin) Rong
6.1 Introduction .. 137
6.1.1 Current State-of-the-art... 138
6.2 Manufacturing Planning System... 140
6.2.1 Feature-based Part Information Modelling 140
6.2.2 Feature Manufacturing Strategy ... 143
6.2.3 Machine Tool Capability Modelling .. 144
6.2.4 Setup Planning ... 144
6.2.5 Fixture Design in Computer-aided Manufacturing Planning.... 146
6.2.6 Manufacturing Plan Generation.. 147
6.3 Automated Setup Planning ... 148
6.3.1 Graph Theory and Application in Setup Planning... 150
6.3.2 Feature Tolerance Relationship Graph (FTG)..................................... 150
6.3.3 Datum and Machining Feature Relationship Graph (DMG).... 152
6.3.4 Automated Setup Planning ... 153
6.3.5 A Case Study .. 156
6.4 Information Modelling ... 159
 6.4.1 A Systematic Information Modelling Methodology 159
 6.4.2 Information Model of CAMP for Mass Customisation 161
6.5 Summary and Discussions ... 164
References .. 165

7 Scheduling in Holonic Manufacturing Systems 167
 Paulo Sousa, Carlos Ramos, José Neves

 7.1 Introduction ... 167
 7.2 Background .. 168
 7.2.1 Holonic Systems .. 168
 7.2.2 Holonic Manufacturing Systems ... 169
 7.3 Applications of Holonic Manufacturing Systems 170
 7.4 An Approach: the Fabricare Holonic System 172
 7.4.1 General Description .. 172
 7.4.2 Description of Major Holons .. 173
 7.4.3 Negotiation Protocol .. 176
 7.4.4 A Prototype .. 179
 7.4.5 Experiments ... 183
 7.5 Conclusions .. 185
References .. 185

8 Agent-based Dynamic Scheduling for Distributed Manufacturing 191
 Weiming Shen, Qi Hao

 8.1 Introduction ... 191
 8.2 Complexity of Manufacturing Scheduling Problem 192
 8.3 Literature Review .. 193
 8.4 iShopFloor Framework .. 195
 8.5 Agent-based Dynamic Manufacturing Scheduling 198
 8.6 Agent Framework – AADE ... 201
 8.7 Proof-of-concept Prototypes .. 203
 8.7.1 Agent-based Dynamic Scheduling in iShopFloor 203
 8.7.2 Real-time Scheduling Service for Enterprise Collaboration ... 204
 8.8 Key Issues in Technology Deployment in Industry 207
 8.9 Conclusions and Future Work ... 208
References .. 210

9 A Multi-agent System Implementation of an Evolutionary Approach to Production Scheduling .. 213
 Scott S. Walker, Douglas H. Norrie, Robert W. Brennan

 9.1 Introduction ... 213
 9.2 Background ... 214
9.2.1 HMS Architectures and Scheduling .. 214
9.2.2 Intelligent Job-shop Scheduling ... 215
9.3 Implementing the Agent-based Scheduling System 216
 9.3.1 The Benchmark ... 216
 9.3.2 The System Architecture ... 218
 9.3.3 The Scheduling Algorithm ... 219
9.4 Experiments ... 225
 9.4.1 Summary of the Experimental System 225
 9.4.2 Stochastic Scenario (Stage 2) Results 229
 9.4.3 Evolving the Mixed-heuristic Scheduler 232
9.5 Conclusions .. 237
References .. 239

10 Distributed Scheduling in Multiple-factory Production
 with Machine Maintenance ... 243
 Felix Tung Sun Chan, Sai Ho Chung

 10.1 Introduction ... 243
 10.2 Literature Review ... 246
 10.3 Problem Background .. 249
 10.4 Optimisation Methodology: Genetic Algorithm with Dominant Genes .. 253
 10.4.1 Dominant Genes ... 253
 10.4.2 Encoding of Chromosome .. 255
 10.4.3 Dominant Genes Crossover .. 256
 10.4.4 Mutation Operator .. 257
 10.4.5 Elitist Strategy ... 258
 10.4.6 Prevention of Prematurity and Local Searching 258
 10.5 Example ... 259
 10.6 Conclusions ... 264
References .. 264

11 Resource Scheduling for a Virtual CIM System 269
 Sev Nagalingam, Grier Lin, Dongsheng Wang

 11.1 Introduction ... 269
 11.2 VCIM System .. 270
 11.2.1 VCIM Issues ... 272
 11.2.2 Need for a VCIM Architecture ... 274
 11.2.3 An Agent-based VCIM Architecture 278
 11.2.4 A Java Implementation Environment for a Multi-agent VCIM System .. 280
 11.3 Resource Scheduling with the VCIM Architecture 283
 11.3.1 Resource Scheduling in a VCIM System 283
 11.3.2 VCIM Resource Scheduling Process 284
 11.4 Conclusions ... 291
References .. 292
12 A Unified Model-based Integration of Process Planning and Scheduling ... 295
Weidong Li, S.K. Ong, A.Y.C. Nee

12.1 Introduction .. 295
12.2 Recently Related Works ... 296
12.3 A Unified Model to Integrate Process Planning and Scheduling ... 297
12.4 Simulated Annealing-based Optimisation Approach .. 303
12.5 Case Studies and Discussions .. 305
12.6 Conclusions .. 307
References .. 308

13 A Study on Integrated Process Planning and Scheduling System for Holonic Manufacturing ... 311
Nobuhiro Sugimura, Rajesh Shrestha, Yoshitaka Tanimizu, Koji Iwamura

13.1 Introduction .. 311
13.2 Literature Review ... 312
13.3 Process Planning for Holonic Manufacturing Systems ... 313
 13.3.1 Holonic Manufacturing Systems .. 313
 13.3.2 Integrated Process Planning and Scheduling ... 315
 13.3.3 Target System Configuration ... 315
13.4 Process Planning by Job Holons .. 317
 13.4.1 Input Information .. 317
 13.4.2 Objective Functions ... 318
 13.4.3 Procedures Based on GA and DP ... 320
13.5 Scheduling by Scheduling Holon ... 323
 13.5.1 Objective Functions ... 323
 13.5.2 Scheduling Method Based on GA and Dispatching Rules .. 325
 13.5.3 Process Plan Modification .. 326
13.6 Case Studies .. 328
 13.6.1 Process Planning .. 328
 13.6.2 Verification of Dispatching Rules ... 329
 13.6.3 Verification of Process Plan Modification .. 330
13.7 Conclusions .. 332
References .. 332

14 Managing Dynamic Demand Events in Semiconductor Manufacturing Chains by Optimal Control Modelling ... 335
Yon-Chun Chou

14.1 Introduction .. 335
14.2 Problem Description ... 339
14.3 Full-load Production Functions ... 343
 14.3.1 A Full-load Production Function Based on Alternative Routing 346
14.4 A Dynamic System Model .. 349
14.4.1 A Formulation of Optimal Control ... 350
14.4.2 Closed Control Set ... 354
14.5 Numerical Examples and Application .. 356
14.6 Conclusions .. 362
References .. 362

15 A Parameter-perturbation Approach to Replanning Operations 365
 Nazrul I. Shaikh, Michael Masin, Richard A. Wysk

15.1 Introduction .. 365
15.2 AHFM Approach .. 366
 15.2.1 AHFM for Production Planning ... 367
 15.2.2 Solution Approach to AHFM .. 374
 15.2.3 Scalability of AHFM ... 379
15.3 Plan Perturbation due to New Customers Orders 382
 15.3.1 Estimation of New Order Cost ... 382
 15.3.2 New Order Insertion Case Study 386
15.4 Extending the Applicability of AHFM .. 389
15.5 Conclusions .. 391
References .. 391

16 STEP into Distributed Manufacturing with STEP-NC 393
 Xun Xu

16.1 Introduction .. 393
16.2 Impediments of Current CNC Technologies 395
16.3 The STEP-NC Standard ... 396
16.4 STEP-NC Implementation Methods ... 398
 16.4.1 Part 21 Physical File Implementation Method 399
 16.4.2 Data Access Implementation Methods 400
 16.4.3 XML Implementation Method (Part 28 Edition 1) 401
 16.4.4 XML Implementation Method (Part 28 Edition 2) 402
 16.4.5 Recap – Issues Concerning STEP-NC in XML Format 402
 16.4.6 Recent Research Publications .. 403
16.5 A STEP-compliant CAPP System for Distributed Manufacturing ... 403
 16.5.1 System Model ... 406
 16.5.2 Native STEP-NC Adaptor and Native CNC Databases 411
 16.5.3 System Development ... 412
16.6 Conclusions .. 417
References .. 419

Index .. 423
Process Planning and Scheduling for Distributed Manufacturing
Wang, L.; Shen, W. (Eds.)
2007, XIX, 429 p., Hardcover
ISBN: 978-1-84628-751-0