Epidemiology

Bong Jin Park, Han Kyu Kim, Burak Sade, and Joung H. Lee

Introduction

Meningiomas constitute 13–25% of primary intracranial neoplasms. In one population-based study, these tumors accounted for 40% of all primary intracranial neoplasms when tumors diagnosed incidentally at autopsy or by neuroimaging studies were included. Symptomatic tumors were encountered in 2.0/100,000 of the population and the asymptomatic ones in 5.7/100,000, with an overall incidence of 7.7/100,000. Asymptomatic meningiomas can be found in about 1–2.3% of all autopsies. However, the classical teaching of the past few decades, which may be erroneous, suggests the most common primary intracranial neoplasms are gliomas (50.3%), followed by meningiomas (20.9%), pituitary adenomas (15%) and nerve sheath tumors (8%). Such discrepancy in these incidence rates underscores the fact that the majority of meningiomas actually remain asymptomatic and undetected during life. With recent advances in neuroimaging, many asymptomatic meningiomas are being detected today, making the true incidence higher than those previously reported. It has been shown that the incidence for meningiomas increased 3- to 3.9-fold in the post–computed tomography (CT) decade.

Gender, Race, and Age

Meningiomas show a higher incidence among women as compared to men in most ethnic groups. The male-to-female ratio ranges from 1:1.4 to 2.6. In population-based studies, the mean annual crude incidence rates are reported to be 2–7/100,000 for women and 1–5/100,000 for men. Malignant meningiomas are located over the cerebral convexities. In approximately 73.3–75% of cases these tumors are located in the supratentorial compartment. The ratio of calvarial to basal skull meningiomas was reported as 2.3:1. Extracranial metastases from meningiomas have been considered to be one of the strong indicators of malignancy and have been shown to occur in 11–23% of patients with malignant meningiomas.

The most common locations include parasagittal/falcine 25%, convexity 19%, sphenoid ridge 17%, followed by suprasellar 9%, posterior fossa 8%, olfactory groove 8%, middle
Meningiomas in Children

In children, meningiomas account for only 0.4–4.0% of primary intracranial neoplasms.1,17–29 The age-adjusted annual incidence was reported to be 1.32/1,000,000.30 There is a male predominance, with a male-to-female ratio of 1.2 to 1.9.1,27,30

The majority of meningiomas in the pediatric age group are located supratentorially (66%), whereas 19% occur in the posterior fossa and 17% present as intraventricular meningiomas.30 They are usually seen in association with neurofibromatosis type 2 (NF-2) or following radiation therapy and show a significantly higher incidence of tumor calcification.27,28 In NF-2, it has been estimated that 50% of all patients develop meningiomas, and 30% of these patients have multiple meningiomas.6

In children, additional unique features include the significantly increased incidence of atypical (36.4%) and malignant (27.2%) subtypes. In infants, meningiomas are extremely rare and show a higher frequency in males and favor convexity location. On the other hand, there is a smaller incidence of seizure, and dural attachment is less frequently seen on preoperative imaging.1

Spinal Meningiomas

In women, meningiomas are by far the most common primary spinal tumor, accounting for 58% of all spinal tumors, whereas in men they are the third most common primary spinal tumor following gliomas and nerve sheath tumors.31 Spinal meningiomas are reported to be more frequent in western countries (25–46%) as compared to Asian countries, for example, 14.1% in China and 8.6% in Thailand.17,19,32 Thoracic spine is the most common site (55–57.1%).17,19,32

The male-to-female ratio is 1:4 to 1:5.33 In females, they are very common in the postmenopausal age group, with the majority (75–87%) occurring over the age of 40.34,35

The tumor is located completely intradurally in 83–90%, extradurally in 5–14%, and both intradurally and extradurally in 5% of the cases.32,33 Extradural meningiomas are reported to be more common in children. In 50–68% of the cases, the tumor is located lateral to the spinal cord, in 18–31% posteriorly, and in 15–19% anteriorly.32,33

Histologically, 43.9–56.9% of spinal meningiomas show psammomatous subtype, whereas 28–29.9% are meningothelial, 8–19% transitional, 2.3–5% are fibrous, and 0.6% are malignant meningiomas.32,33 The incidence of multiple spinal meningiomas is reported as 1–9%. In a recent review of our series, contrary to the above, meningothelial subtype was the most common (80%) in the spine.34

Radiation

In a population-based study, the incidence of meningiomas among Hiroshima atomic bomb survivors was 8.7/100,000.36 When this population was stratified according to the hypocenter to the explosion, the incidence of meningiomas was much higher in patients who had been closer to the site of explosion. Similarly, the incidence of meningiomas was reported as 9.5/100,000 population in the group who had undergone low-dose radiation treatment as children for tinea capitis in Israel.17

In the medical or occupational setting, no significant associations were observed for diagnostic studies and increased meningioma incidence, but the use of radiation therapy to head and neck for neoplastic conditions has been shown to be associated with an increase in the incidence of meningiomas.38

Radiation-induced meningiomas differ significantly from primary intracranial meningiomas in that their incidence of calvarial location, multiplicity, recurrence rate following complete resection, and malignant histology are higher.25

Occupation

Association of increased risk of meningioma incidence has been suggested for various occupations in the literature. There is a huge diversity in the nature of proposed occupations such as dentists, teachers, managers, social workers, workers in the petroleum, rubber and plastics industry, auto body repairers, painters, chemists, carpenters, cooks, woodworkers, glassmakers, machine operators, as well as military workers, motor vehicle drivers, computer specialists, and so on.13,39,40

Rajamaran et al. have stated that it might be practical to analyze these occupations in two groups.39 Groups like teachers, managers, etc., tend to be relatively better educated and would be expected to have a higher awareness of their health status,
which would result in the increased detection of tumors in these groups, by earlier recognition of the symptoms, or by stronger willingness of the individual to seek medical care. On the other hand, exposure to some chemical agents or other environmental factors may be more influential in other groups. In this context, lead, tin, cadmium, benzene, and metal dusts and fumes have been suggested as possible contributors.12,39–41

Cell Phone Use

Over the years, there has been much debate about the potential role of cell phones as a causative factor in the development of brain tumors because of the microwaves emitted by these devices. In a recent population-based case-control study conducted on 366 glioma and 381 meningioma patients with 1494 controls, no association was found between cell phone use and increased meningioma incidence. However, in this study, increased incidence for glioma occurrence was detected in individuals who had used cell phones for more than 10 years.42 A similar study in a relatively smaller scale also suggested a low risk for development of high-grade glioma for cell phone users, but the overall results did not show any association for either gliomas or meningiomas.43 The study conducted by the Swedish Interphone Study Group also found no increase in incidence for gliomas or meningiomas located in the temporal or parietal lobes, regardless of tumor histology, phone type, or amount of phone use.44

References

Meningiomas
Diagnosis, Treatment, and Outcome
Lee, J.H. (Ed.)
2009, XXIII, 639 p., Hardcover
ISBN: 978-1-84628-526-4