Contents

Foreword .. vii

List of Contributors .. xiii

1 Introduction
Dennis Gannon, Ewa Deelman, Matthew Shields, and Ian Taylor 1

2 Scientific versus Business Workflows
Roger Barga and Dennis Gannon 9

Part I Application and User Perspective

3 Generating Complex Astronomy Workflows

4 A Case Study on the Use of Workflow Technologies for Scientific Analysis: Gravitational Wave Data Analysis
Duncan A. Brown, Patrick R. Brady, Alexander Dietz, Junwei Cao, Ben Johnson, and John McNabb 39

5 Workflows in Pulsar Astronomy
John Brooke, Stephen Pickles, Paul Carr, and Michael Kramer 60

6 Workflow and Biodiversity e-Science
Andrew C. Jones ... 80
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Ecological Niche Modeling Using the Kepler Workflow System</td>
<td>Deana D. Pennington, Dan Higgins, A. Townsend Peterson, Matthew B. Jones, Bertram Ludäscher, and Shawn Bowers</td>
<td>91</td>
</tr>
<tr>
<td>8 Case Studies on the Use of Workflow Technologies for Scientific</td>
<td>Abel W. Lin, Steven T. Peltier, Jeffrey S. Grethe, and Mark H. Ellisman</td>
<td>109</td>
</tr>
<tr>
<td>Analysis: The Biomedical Informatics Research Network and the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telescience Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Dynamic, Adaptive Workflows for Mesoscale Meteorology</td>
<td>Dennis Gannon, Beth Plate, Suresh Marru, Gopi Kandaswamy, Yogesh Simmhan, and Satoshi Shirasuna</td>
<td>126</td>
</tr>
<tr>
<td>10 SCEC CyberShake Workflows—Automating Probabilistic Seismic</td>
<td>Philip Maechling, Ewa Deelman, Li Zhao, Robert Graves, Gaurang Mehta,</td>
<td>143</td>
</tr>
<tr>
<td>Hazard Analysis Calculations</td>
<td>Nitin Gupta, John Mehringer, Carl Kesselman, Scott Callaghan, David</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Okaya, Hunter Franconeur, Vipin Gupta, Yifeng Cui, Karan Vahi, Thomas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jordan, and Edward Field</td>
<td></td>
</tr>
<tr>
<td>Part II Workflow Representation and Common Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Control- Versus Data-Driven Workflows</td>
<td>Matthew Shields</td>
<td>167</td>
</tr>
<tr>
<td>12 Component Architectures and Services: From Application Construction</td>
<td>Dennis Gannon</td>
<td>174</td>
</tr>
<tr>
<td>to Scientific Workflows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Petri Nets</td>
<td>Andreas Hoheisel and Martin Alt.</td>
<td>190</td>
</tr>
<tr>
<td>14 Adapting BPEL to Scientific Workflows</td>
<td>Aleksander Slominski</td>
<td>208</td>
</tr>
<tr>
<td>15 Protocol-Based Integration Using SSDL and π-Calculus</td>
<td>Simon Woodman, Savas Parastatidis, and Jim Webber</td>
<td>227</td>
</tr>
<tr>
<td>16 Workflow Composition: Semantic Representations for Flexible</td>
<td>Yolanda Gil</td>
<td>244</td>
</tr>
<tr>
<td>Automation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17 Virtual Data Language: A Typed Workflow Notation for Diversely Structured Scientific Data
Yong Zhao, Michael Wilde, and Ian Foster 258

Part III Frameworks and Tools: Workflow Generation, Refinement, and Execution

18 Workflow-Level Parametric Study Support by MOTEUR and the P-GRAGE Portal
Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltan Farkas, and Peter Kacsuk 279

19 Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community
Tom Oinn, Peter Li, Douglas B. Kell, Carole Goble, Antoon Goderis, Mark Greenwood, Duncan Hull, Robert Stevens, Daniele Turi, and Jun Zhao ... 300

20 The Triana Workflow Environment: Architecture and Applications
Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison 320

21 Java CoG Kit Workflow
Gregor von Laszewski, Mihael Hategan, and Deepti Kodeboyina 340

22 Workflow Management in Condor
Peter Couvares, Tevfik Kosar, Alain Roy, Jeff Weber, and Kent Wenger 357

23 Pegasus: Mapping Large-Scale Workflows to Distributed Resources
Ewa Deelman, Gaurang Mehta, Gurmeet Singh, Mei-Hui Su, and Karan Vahi ... 376

24 ICENI
A. Stephen M’Cough, William Lee, Jeremy Cohen, Eleftheria Katsiri, and John Darlington 395

25 Expressing Workflow in the Cactus Framework
Tom Goodale ... 416

26 Sedna: A BPEL-Based Environment for Visual Scientific Workflow Modeling
Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick Cameron, Liang Chen, Jignesh Patel 428
27 ASKALON: A Development and Grid Computing Environment for Scientific Workflows
Thomas Fahringer, Radu Prodan, Rubing Duan, Jürgen Hofer, Farrukh Nadeem, Francesco Nerieri, Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, Alex Villazon, and Marek Wieczorek.. 450

Part IV Future Requirements

Looking into the Future of Workflows: The Challenges Ahead
Ewa Deelman.. 475

References ... 483

Index .. 514
Workflows for e-Science
Scientific Workflows for Grids
Taylor, I.J.; Deelman, E.; Gannon, D.B.; Shields, M. (Eds.)
2007, XXII, 526 p., Hardcover
ISBN: 978-1-84628-519-6