Contents

Notation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Control of Wind Energy Conversion Systems</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Gain Scheduling Techniques</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Robust Control of WECS</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Outline of the Book</td>
<td>4</td>
</tr>
<tr>
<td>2 The Wind and Wind Turbines</td>
<td>7</td>
</tr>
<tr>
<td>2.1 The Wind</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 The Source of Winds</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Mean Wind Speed</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Energy in the Wind</td>
<td>10</td>
</tr>
<tr>
<td>2.1.4 Turbulence</td>
<td>11</td>
</tr>
<tr>
<td>2.2 The Wind Turbines</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1 Types of Rotors</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Wind Turbine Aerodynamics</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3 Force, Torque and Power</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Wind Speed Experienced by the Turbine</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1 Deterministic Component</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2 Stochastic Component</td>
<td>27</td>
</tr>
<tr>
<td>3 Modelling of WECS</td>
<td>29</td>
</tr>
<tr>
<td>3.1 WECS Description</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Mechanical Subsystem</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Aerodynamic Subsystem</td>
<td>36</td>
</tr>
<tr>
<td>3.4 Electrical Subsystem</td>
<td>37</td>
</tr>
<tr>
<td>3.4.1 Directly Coupled Squirrel-cage Induction Generator</td>
<td>37</td>
</tr>
<tr>
<td>3.4.2 Stator-controlled Squirrel-cage Induction Generator</td>
<td>39</td>
</tr>
<tr>
<td>3.4.3 Rotor-controlled Doubly-fed Induction Generator</td>
<td>40</td>
</tr>
<tr>
<td>3.5 Pitch Subsystem</td>
<td>42</td>
</tr>
</tbody>
</table>
Contents

3.6 Model of the Entire WECS 43
3.7 Effective Wind Model 45
 3.7.1 Mean Wind Speed Model 45
 3.7.2 Turbulence Model 46
 3.7.3 Effective Wind Speed 47
 3.7.4 Effective Wind Speed Simulations 47

4 Control Objectives and Strategies 49
 4.1 Control Objectives 50
 4.1.1 Energy Capture 50
 4.1.2 Mechanical Loads 52
 4.1.3 Power Quality 53

4.2 Modes of Operation 54

4.3 Control Strategies 56
 4.3.1 Fixed-speed Fixed-pitch 56
 4.3.2 Fixed-speed Variable-pitch 60
 4.3.3 Variable-speed Fixed-pitch 64
 4.3.4 Variable-speed Variable-pitch 68
 4.3.5 Some Options to the Previous Control Strategies .. 69

5 Control of Variable-speed Fixed-pitch Wind Turbines 81
 5.1 Introduction to LPV Gain Scheduling Techniques 81
 5.2 LPV Model of Fixed-pitch WECS 83
 5.3 Open-loop Characteristics 88
 5.4 LPV Gain Scheduling Control 91
 5.4.1 Controller Objectives 91
 5.4.2 Controller Schemes 93
 5.4.3 The Controller Design Issue 97
 5.4.4 Preliminary Control 99
 5.4.5 Control with Damping Injection 102
 5.4.6 Dealing with Uncertainties 106
 5.4.7 Performance Assessment of other Variable-speed
 Fixed-pitch Control Strategies 111

6 Control of Variable-speed Variable-pitch Wind Turbines .. 115
 6.1 LPV Model of Variable-pitch WECS 116
 6.2 Open-loop Characteristics 121
 6.3 LPV Gain Scheduling Control 125
 6.3.1 Controller Schemes 125
 6.3.2 Modified Control Strategy for Improved Controllability 130
 6.3.3 The Controller Design Issue 131
 6.3.4 Control in the High Wind Speed Region 134
 6.3.5 Control in the Low Wind Speed Region............... 144
 6.3.6 Control over the Full Range of Operational Wind Speeds146
 6.3.7 Effects of Uncertainties 148
Contents

A Linear Matrix Inequalities
- A.1 Definition .. 151
- A.2 Semidefinite Programming 153
- A.3 Properties .. 155

B Gain Scheduling Techniques and LPV Systems
- B.1 Gain Scheduling Techniques 159
- B.2 LPV Systems ... 162
 - B.2.1 Stability ... 163
 - B.2.2 Performance ... 164
- B.3 Synthesis of LPV Gain Scheduling Controllers 167
 - B.3.1 Synthesis Procedures 168
 - B.3.2 Computational Considerations 173
 - B.3.3 Problem Setup .. 177
- B.4 LPV Descriptions of Nonlinear Systems 179
- B.5 Robust LPV Gain Scheduling Control 182
 - B.5.1 Robust Stability 185
 - B.5.2 Robust Performance 188
 - B.5.3 Synthesis with Scaling Matrices 188

C Quasi-LPV Model and Control 191

References .. 195

Index .. 203
Wind Turbine Control Systems
Principles, Modelling and Gain Scheduling Design
Bianchi, F.D.; de Battista, H.; Mantz, R.J.
2007, XX, 208 p., Hardcover