Contents

1 Introduction .. 1

Part I Modelling

2 Modelling of DC-to-DC Power Converters 11
 2.1 Introduction ... 11
 2.2 The Buck Converter 13
 2.2.1 Model of the Converter 14
 2.2.2 Normalization 15
 2.2.3 Equilibrium Point and Static Transfer Function . 16
 2.2.4 A Buck Converter Prototype 18
 2.3 The Boost Converter 20
 2.3.1 Model of the Converter 22
 2.3.2 Normalization 23
 2.3.3 Equilibrium Point and Static Transfer Function . 23
 2.3.4 Alternative Model of the Boost Converter 24
 2.3.5 A Boost Converter Prototype 25
 2.4 The Buck-Boost Converter 27
 2.4.1 Model of the Converter 27
 2.4.2 Normalization 28
 2.4.3 Equilibrium Point and Static Transfer Function . 29
 2.4.4 A Buck-Boost Converter Prototype 30
 2.5 The Non-inverting Buck-Boost Converter 31
 2.5.1 Model of the Converter 31
 2.5.2 Normalization 32
 2.5.3 Equilibrium Point and Static Transfer Function . 33
 2.6 The Ćuk Converter 34
 2.6.1 Model of the Converter 35
 2.6.2 Normalization 36
 2.6.3 Equilibrium Point and Static Transfer Function . 37
2.7 The Sepic Converter 38
 2.7.1 Model of the Converter 39
 2.7.2 Normalization 39
 2.7.3 Equilibrium Point and Static Transfer Function 40
2.8 The Zeta Converter 41
 2.8.1 Model of the Converter 41
 2.8.2 Normalization 43
 2.8.3 Equilibrium Point and Static Transfer Function 43
2.9 The Quadratic Buck Converter 44
 2.9.1 Model of the Converter 44
 2.9.2 Normalized Model 45
 2.9.3 Equilibrium Point 45
 2.9.4 Static Transfer Function 46
2.10 The Boost-Boost Converter 46
 2.10.1 Model of the Boost-Boost Converter 47
 2.10.2 Average Normalized Model 47
 2.10.3 Equilibrium Point and Static Transfer Function 47
 2.10.4 Alternative Model of the Boost-Boost Converter ... 49
 2.10.5 A Boost-Boost Converter Experimental Prototype ... 50
2.11 The Double Buck-Boost Converter 50
 2.11.1 Model of the Double Buck-Boost Converter 51
 2.11.2 Average Normalized Model 51
 2.11.3 Equilibrium Point and Static Transfer Function 51
2.12 Power Converter Models with Non-ideal Components ... 52
2.13 A General Mathematical Model for Power Electronics Devices 54
 2.13.1 Some Illustrative Examples of the General Model 56

Part II Controller Design Methods

3 Sliding Mode Control 61
 3.1 Introduction 61
 3.2 Variable Structure Systems 62
 3.2.1 Control of Single Switch Regulated Systems 62
 3.2.2 Sliding Surfaces 64
 3.2.3 Notation 65
 3.2.4 Equivalent Control and the Ideal Sliding Dynamics ... 65
 3.2.5 Accessibility of the Sliding Surface 67
 3.2.6 Invariance Conditions for Matched Perturbations ... 69
 3.3 Control of the Boost Converter 71
 3.3.1 Direct Control 71
 3.3.2 Indirect Control 72
 3.3.3 Simulations 74
 3.3.4 Experimental Implementation 75
 3.4 Control of the Buck-Boost Converter 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Direct Control</td>
<td>79</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Indirect Control</td>
<td>80</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Simulations</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Control of the Čuk Converter</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Direct Control</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Indirect Control</td>
<td>84</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Simulations</td>
<td>86</td>
</tr>
<tr>
<td>3.6</td>
<td>Control of the Zeta Converter</td>
<td>87</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Direct Control</td>
<td>88</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Indirect Control</td>
<td>88</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Simulations</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Control of the Quadratic Buck Converter</td>
<td>91</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Direct Control</td>
<td>92</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Indirect Control</td>
<td>93</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Simulations</td>
<td>95</td>
</tr>
<tr>
<td>3.8</td>
<td>Multi-variable Case</td>
<td>95</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Sliding Surfaces</td>
<td>97</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Equivalent Control and Ideal Sliding Dynamics</td>
<td>99</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Invariance with Respect to Matched Perturbations</td>
<td>100</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Accessibility of the Sliding Surface</td>
<td>101</td>
</tr>
<tr>
<td>3.9</td>
<td>Control of the Boost-Boost Converter</td>
<td>102</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Direct Control</td>
<td>103</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Indirect Control</td>
<td>104</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Simulations</td>
<td>105</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Experimental Sliding Mode Control Implementation</td>
<td>105</td>
</tr>
<tr>
<td>3.10</td>
<td>Control of the Double Buck-Boost Converter</td>
<td>108</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Direct Control</td>
<td>109</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Indirect Control</td>
<td>110</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Simulations</td>
<td>111</td>
</tr>
<tr>
<td>3.11</td>
<td>$\Sigma - \Delta$ Modulation</td>
<td>112</td>
</tr>
<tr>
<td>3.11.1</td>
<td>$\Sigma - \Delta$-Modulators</td>
<td>113</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Average Feedbacks and $\Sigma - \Delta$-Modulation</td>
<td>115</td>
</tr>
<tr>
<td>3.11.3</td>
<td>A Hardware Realization of a $\Sigma - \Delta$-Modulator</td>
<td>118</td>
</tr>
<tr>
<td>4</td>
<td>Approximate Linearization in the Control of Power Electronics Devices</td>
<td>123</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>4.2</td>
<td>Linear Feedback Control</td>
<td>124</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Pole Placement by Full State Feedback</td>
<td>124</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Pole Placement Based on Observer Design</td>
<td>126</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Reduced Order Observers</td>
<td>128</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Flatness</td>
<td>130</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Generalized Proportional Integral Controllers</td>
<td>133</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Passivity Based Control</td>
<td>136</td>
</tr>
<tr>
<td>4.2.7</td>
<td>A Hamiltonian Systems Viewpoint</td>
<td>139</td>
</tr>
</tbody>
</table>
4.3 The Buck Converter .. 142
 4.3.1 Generalities about the Average Normalized Model 142
 4.3.2 Controller Design by Pole Placement 144
 4.3.3 Proportional-Derivative Control via State Feedback ... 145
 4.3.4 Trajectory Tracking 146
 4.3.5 Fliess’ Generalized Canonical Forms 150
 4.3.6 State Feedback Control via Observer Design 152
 4.3.7 GPI Controller Design 154
 4.3.8 Passivity Based Control 156
 4.3.9 The Hamiltonian Systems Viewpoint 159
 4.3.10 Implementation of the Linear Passivity Based Control for the Buck Converter 162

4.4 The Boost Converter ... 168
 4.4.1 Generalities about the Average Normalized Model 168
 4.4.2 Control via State Feedback 172
 4.4.3 Proportional-Derivative State Feedback Control 174
 4.4.4 Trajectory Tracking .. 176
 4.4.5 Fliess’ Generalized Canonical Form 181
 4.4.6 State Feedback Control via Observer Design 182
 4.4.7 GPI Controller Design 183
 4.4.8 Passivity Based Control 185
 4.4.9 The Hamiltonian Systems Viewpoint 187

4.5 The Buck-Boost Converter 189
 4.5.1 Generalities about the Model 189
 4.5.2 State Feedback Controller Design 193
 4.5.3 Dynamic Proportional-Derivative State Feedback
 Control ... 195
 4.5.4 Trajectory Tracking .. 198
 4.5.5 Fliess’ Generalized Canonical Forms 199
 4.5.6 Control via Observer Design 200
 4.5.7 GPI Controller Design 202
 4.5.8 Passivity Based Control 204
 4.5.9 The Hamiltonian Systems Viewpoint 205
 4.5.10 Experimental Passivity based Control of the
 Buck-Boost Converter 207

4.6 The Cuk Converter ... 210
 4.6.1 Generalities about the Model 210
 4.6.2 The Hamiltonian System Approach 213

4.7 The Zeta Converter .. 214
 4.7.1 Generalities about the Model 214
 4.7.2 The Hamiltonian System Approach 218

4.8 The Quadratic Buck Converter 219
 4.8.1 Generalities about the Model 219
 4.8.2 State Feedback Controller Design 223
 4.8.3 The Hamiltonian System Approach 227
5 Nonlinear Methods in the Control of Power Electronics Devices

4.9 The Boost-Boost Converter ... 229
 4.9.1 Generalities about the Model .. 229
 4.9.2 The Hamiltonian System Approach 233

5.1 Introduction .. 235

5.2 Feedback Linearization .. 236
 5.2.1 Isidori’s Canonical Form ... 236
 5.2.2 Input-Output Feedback Linearization 238
 5.2.3 State Feedback Linearization ... 240
 5.2.4 The Boost Converter ... 243
 5.2.5 The Buck-Boost Converter .. 246
 5.2.6 The Ćuk Converter ... 249
 5.2.7 The Sepic Converter .. 254
 5.2.8 The Zeta Converter .. 258
 5.2.9 The Quadratic Buck Converter 261

5.3 Passivity Based Control ... 261
 5.3.1 The Boost Converter ... 263
 5.3.2 The Buck-Boost Converter .. 266
 5.3.3 The Ćuk Converter ... 269
 5.3.4 The Sepic Converter .. 272
 5.3.5 The Zeta Converter .. 274
 5.3.6 The Quadratic Buck Converter 279

5.4 Exact Error Dynamics Passive Output Feedback Control 282
 5.4.1 A General Result .. 282
 5.4.2 The Boost Converter ... 286
 5.4.3 Experimental Implementation .. 288
 5.4.4 The Buck-Boost Converter .. 291
 5.4.5 The Ćuk Converter ... 293
 5.4.6 The Sepic Converter .. 294
 5.4.7 The Zeta Converter .. 298
 5.4.8 The Quadratic Buck Converter 301
 5.4.9 The Boost-Boost Converter ... 304
 5.4.10 The Double Buck-Boost Converter 306

5.5 Error Dynamics Passive Output Feedback 309
 5.5.1 The Boost Converter ... 312
 5.5.2 Experimental Results .. 315

5.6 Control via Fliess’ Generalized Canonical Form 316
 5.6.1 The Boost Converter ... 317
 5.6.2 The Buck-Boost Converter .. 322
 5.6.3 The Quadratic Buck Converter 326

5.7 Nonlinear Observers for Power Converters 331
 5.7.1 Full Order Observers ... 331
 5.7.2 The Boost Converter ... 333
5.7.3 The Buck-Boost Converter 335
5.8 Reduced Order Observers 337
5.8.1 The Boost Converter 337
5.8.2 The Buck-Boost Converter 341
5.9 GPI Sliding Mode Control 343
5.9.1 The Buck Converter 344
5.9.2 The Boost Converter 350
5.9.3 The Buck-Boost Converter 355

Part III Applications

6 DC-to-AC Power Conversion 361
6.1 Introduction 361
6.2 Nominal Trajectories in DC-to-AC Power Conversion 363
6.2.1 The Buck Converter 363
6.2.2 Two-Sided $\Sigma-\Delta$ Modulation 365
6.2.3 The Boost Converter 366
6.2.4 The Buck-Boost Converter 370
6.3 An Approximate Linearization Approach 371
6.3.1 The Boost Converter 371
6.3.2 The Buck-Boost Converter 373
6.4 A Flatness Based Approach 374
6.4.1 The Double Bridge Buck Converter 374
6.4.2 The Boost Converter 375
6.4.3 The Buck-Boost Converter 376
6.5 A Sliding Mode Control Approach 378
6.5.1 The Boost Converter 378
6.5.2 A Feasible Indirect Input Current Tracking Approach 378
6.6 Exact Tracking Error Dynamics Passive Output Feedback Control 380
6.6.1 The Double Bridge Buck Converter 380
6.6.2 The Boost Converter 381
6.6.3 The Buck-Boost Converter 383

7 AC Rectifiers 385
7.1 Introduction 385
7.2 Boost Unit Power Factor Rectifier 386
7.2.1 Model of the Monophasic Boost Rectifier 386
7.2.2 The Control Objectives 387
7.2.3 Steady State Considerations 387
7.2.4 Exact Open Loop Tracking Error Dynamics and Controller Design 388
7.2.5 Simulations 389
7.2.6 The Use of the Differential Flatness Property in the Passive Controller Design .. 389
7.2.7 Simulations .. 392
7.3 Three Phase Boost Rectifier ... 392
7.3.1 The Three Phase Boost Rectifier Average Model 393
7.3.2 A Static Passivity Based Controller ... 395
7.3.3 Trajectory Planning ... 395
7.3.4 Switched Implementation of the Average Design 398
7.3.5 Simulations ... 399
7.4 A Unit Power Factor Rectifier-DC Motor System 400
7.4.1 The Combined Rectifier-DC Motor Model 400
7.4.2 The Exact Tracking Error Dynamics Passive Output Feedback Controller .. 403
7.4.3 Trajectory Generation ... 403
7.4.4 Simulations .. 405
7.5 A Three Phase Rectifier-DC Motor System 408
7.5.1 The Combined Three Phase Rectifier DC Motor Model 408
7.5.2 The Exact Tracking Error Dynamics Passive Output Feedback Controller .. 409
7.5.3 Trajectory Generation ... 410
7.5.4 Simulations .. 412

References .. 415

Index .. 421
Control Design Techniques in Power Electronics Devices
Sira-Ramirez, H.; Silva-Ortigoza, R.
2006, XVII, 423 p., Hardcover
ISBN: 978-1-84628-458-8