Contents

1 Introduction ... 1
 1.1 The Engineering Designer 1
 1.1.1 Tasks and Activities 1
 1.1.2 Position of the Design Process
 within a Company 6
 1.1.3 Trends .. 6
 1.2 Necessity for Systematic Design 9
 1.2.1 Requirements and the Need
 for Systematic Design 9
 1.2.2 Historical Background 10
 1.2.3 Current Methods 14
 1.2.4 Aims and Objectives of this Book 19

2 Fundamentals ... 27
 2.1 Fundamentals of Technical Systems 27
 2.1.1 Systems, Plant, Equipment, Machines,
 Assemblies and Components 27
 2.1.2 Conversion of Energy, Material and Signals 29
 2.1.3 Functional Interrelationship 31
 2.1.4 Working Interrelationship 38
 2.1.5 Constructional Interrelationship 42
 2.1.6 System Interrelationship 42
 2.1.7 Systematic Guideline 43
 2.2 Fundamentals of the Systematic Approach 45
 2.2.1 Problem Solving Process 45
 2.2.2 Characteristics of Good Problem Solvers 49
 2.2.3 Problem Solving as Information Processing 51
 2.2.4 General Working Methodology 53
 2.2.5 Generally Applicable Methods 58
 2.2.6 Role of Computer Support 62

3 Product Planning, Solution Finding and Evaluation 63
 3.1 Product Planning 63
 3.1.1 Degree of Novelty of a Product 64
3.1.2 Product Life Cycle 64
3.1.3 Company Goals and Their Effect 65
3.1.4 Product Planning 66
3.2 Solution Finding Methods 77
 3.2.1 Conventional Methods 78
 3.2.2 Intuitive Methods 82
 3.2.3 Discursive Methods 89
 3.2.4 Methods for Combining Solutions 103
3.3 Selection and Evaluation Methods 106
 3.3.1 Selecting Solution Variants 106
 3.3.2 Evaluating Solution Variants 109

4 Product Development Process 125
 4.1 General Problem Solving Process 125
 4.2 Flow of Work During the Process of Designing 128
 4.2.1 Activity Planning 128
 4.2.2 Timing and Scheduling 134
 4.2.3 Planning Project and Product Costs 136
 4.3 Effective Organisation Structures 138
 4.3.1 Interdisciplinary Cooperation 138
 4.3.2 Leadership and Team Behaviour 141

5 Task Clarification 145
 5.1 Importance of Task Clarification 145
 5.2 Setting Up a Requirements List
 (Design Specification) 146
 5.2.1 Contents 146
 5.2.2 Format 147
 5.2.3 Identifying the Requirements 149
 5.2.4 Refining and Extending the Requirements 151
 5.2.5 Compiling the Requirements List 152
 5.2.6 Examples 153
 5.3 Using Requirements Lists 153
 5.3.1 Updating 153
 5.3.2 Partial Requirements Lists 156
 5.3.3 Further Uses 157
 5.4 Practical Application of Requirements Lists 157

6 Conceptual Design 159
 6.1 Steps of Conceptual Design 159
 6.2 Abstracting to Identify the Essential Problems 161
 6.2.1 Aim of Abstraction 161
 6.2.2 Broadening the Problem Formulation 162
 6.2.3 Identifying the Essential Problems from the Requirements List 164
 6.3 Establishing Function Structures 169
8 Mechanical Connections, Mechatronics and Adaptronics .. 439
8.1 Mechanical Connections ... 439
 8.1.1 Generic Functions and General Behaviour 440
 8.1.2 Material Connections 440
 8.1.3 Form Connections 441
 8.1.4 Force Connections 443
 8.1.5 Applications .. 447
8.2 Mechatronics .. 448
 8.2.1 General Architecture and Terminology 448
 8.2.2 Goals and Limitations 450
 8.2.3 Development of Mechatronic Solutions 450
 8.2.4 Examples ... 451
8.3 Adaptronics ... 458
 8.3.1 Fundamentals and Terminology 458
 8.3.2 Goals and Limitations 459
 8.3.3 Development of Adaptronic Solutions 460
 8.3.4 Examples ... 461
9 Size Ranges and Modular Products 465
9.1 Size Ranges .. 465
 9.1.1 Similarity Laws 466
 9.1.2 Decimal-Geometric Preferred Number Series . 469
 9.1.3 Representation and Selection of Step Sizes 472
 9.1.4 Geometrically Similar Size Ranges 476
 9.1.5 Semi-Similar Size Ranges 481
 9.1.6 Development of Size Ranges 493
9.2 Modular Products ... 495
 9.2.1 Modular Product Systematics 496
 9.2.2 Modular Product Development 499
 9.2.3 Advantages and Limitations of Modular Systems 508
 9.2.4 Examples ... 510
9.3 Recent Rationalisation Approaches 514
 9.3.1 Modularisation and Product Architecture 514
 9.3.2 Platform Construction 515
10 Design for Quality ... 517
 10.1 Applying a Systematic Approach 517
 10.2 Faults and Disturbing Factors 521
 10.3 Fault-Tree Analysis 522
 10.4 Failure Mode and Effect Analysis (FMEA) 529
 10.5 Quality Function Deployment (QFD) 531
11 Design for Minimum Cost 535
 11.1 Cost Factors .. 535
 11.2 Fundamentals of Cost Calculations 537
 11.3 Methods for Estimating Costs 539
 11.3.1 Comparing with Relative Costs 539
 11.3.2 Estimating Using Share of Material Costs 544
 11.3.3 Estimating Using Regression Analysis 545
 11.3.4 Extrapolating Using Similarity Relations 547
 11.3.5 Cost Structures 558
 11.4 Target Costing 560
 11.5 Rules for Minimising Costs 561

12 Summary ... 563
 12.1 The Systematic Approach 563
 12.2 Experiences of Applying
 the Systematic Approach in Practice 567

References .. 571

English Bibliography 603

Index ... 609
Engineering Design
A Systematic Approach
Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.
2007, XXI, 617 p., Hardcover