Contents

1 Introduction ... 1
 1.1 Stochastic Models and Metastability 1
 1.2 Timescales and Slow–Fast Systems 6
 1.3 Examples ... 8
 1.4 Reader’s Guide ... 13
Bibliographic Comments 15

2 Deterministic Slow–Fast Systems 17
 2.1 Slow Manifolds ... 18
 2.1.1 Definitions and Examples 18
 2.1.2 Convergence towards a Stable Slow Manifold 22
 2.1.3 Geometric Singular Perturbation Theory 24
 2.2 Dynamic Bifurcations 27
 2.2.1 Centre-Manifold Reduction 27
 2.2.2 Saddle-Node Bifurcation 28
 2.2.3 Symmetric Pitchfork Bifurcation and Bifurcation Delay 34
 2.2.4 How to Obtain Scaling Laws 37
 2.2.5 Hopf Bifurcation and Bifurcation Delay 43
 2.3 Periodic Orbits and Averaging 45
 2.3.1 Convergence towards a Stable Periodic Orbit 45
 2.3.2 Invariant Manifolds 47
Bibliographic Comments 48

3 One-Dimensional Slowly Time-Dependent Systems 51
 3.1 Stable Equilibrium Branches 53
 3.1.1 Linear Case ... 56
 3.1.2 Nonlinear Case 62
 3.1.3 Moment Estimates 66
 3.2 Unstable Equilibrium Branches 68
 3.2.1 Diffusion-Dominated Escape 71
 3.2.2 Drift-Dominated Escape 78
3.3 Saddle–Node Bifurcation .. 84
 3.3.1 Before the Jump 87
 3.3.2 Strong-Noise Regime 90
 3.3.3 Weak-Noise Regime 96
3.4 Symmetric Pitchfork Bifurcation 97
 3.4.1 Before the Bifurcation 99
 3.4.2 Leaving the Unstable Branch 101
 3.4.3 Reaching a Stable Branch 103
3.5 Other One-Dimensional Bifurcations 105
 3.5.1 Transcritical Bifurcation 105
 3.5.2 Asymmetric Pitchfork Bifurcation 108
Bibliographic Comments .. 110

4 Stochastic Resonance .. 111
 4.1 The Phenomenon of Stochastic Resonance 112
 4.1.1 Origin and Qualitative Description 112
 4.1.2 Spectral-Theoretic Results 116
 4.1.3 Large-Deviation Results 124
 4.1.4 Residence-Time Distributions 126
 4.2 Stochastic Synchronisation: Sample-Paths Approach 132
 4.2.1 Avoided Transcritical Bifurcation 132
 4.2.2 Weak-Noise Regime 135
 4.2.3 Synchronisation Regime 138
 4.2.4 Symmetric Case 139
Bibliographic Comments .. 141

5 Multi-Dimensional Slow–Fast Systems 143
 5.1 Slow Manifolds ... 144
 5.1.1 Concentration of Sample Paths 145
 5.1.2 Proof of Theorem 5.1.6 151
 5.1.3 Reduction to Slow Variables 164
 5.1.4 Refined Concentration Results 166
 5.2 Periodic Orbits ... 172
 5.2.1 Dynamics near a Fixed Periodic Orbit 172
 5.2.2 Dynamics near a Slowly Varying Periodic Orbit 175
 5.3 Bifurcations ... 178
 5.3.1 Concentration Results and Reduction 178
 5.3.2 Hopf Bifurcation 185
Bibliographic Comments .. 190

6 Applications .. 193
 6.1 Nonlinear Oscillators 194
 6.1.1 The Overdamped Langevin Equation 194
 6.1.2 The van der Pol Oscillator 196
 6.2 Simple Climate Models 199
Contents

6.2.1 The North-Atlantic Thermohaline Circulation 200
6.2.2 Ice Ages and Dansgaard–Oeschger Events 204
6.3 Neural Dynamics .. 207
6.3.1 Excitability 209
6.3.2 Bursting ... 212
6.4 Models from Solid-State Physics 214
6.4.1 Ferromagnets and Hysteresis 214
6.4.2 Josephson Junctions 219

A A Brief Introduction to Stochastic Differential Equations . 223
A.1 Brownian Motion .. 223
A.2 Stochastic Integrals 225
A.3 Strong Solutions .. 229
A.4 Semigroups and Generators 230
A.5 Large Deviations 232
A.6 The Exit Problem 234
Bibliographic Comments 236

B Some Useful Inequalities 239
B.1 Doob’s Submartingale Inequality and a Bernstein Inequality .. 239
B.2 Using Tail Estimates 240
B.3 Comparison Lemma 241
B.4 Reflection Principle 242

C First-Passage Times for Gaussian Processes 243
C.1 First Passage through a Curved Boundary 243
C.2 Small-Ball Probabilities for Brownian Motion 247
Bibliographic Comments 248

References .. 249

List of Symbols and Acronyms 263

Index .. 271