When I first got into information security in the early 1970s, the little research that existed was focused on mechanisms for preventing attacks. The goal was airtight security, and much of the research by the end of decade and into the next focused on building systems that were provably secure. Although there was widespread recognition that insiders with legitimate access could always exploit their privileges to cause harm, the prevailing sentiment was that we could at least design systems that were not inherently faulty and vulnerable to trivial attacks by outsiders.

We were wrong. This became rapidly apparent to me as I witnessed the rapid evolution of information technology relative to progress in information security. The quest to design the perfect system could not keep up with market demands and developments in personal computers and computer networks. A few Herculean efforts in industry did in fact produce highly secure systems, but potential customers paid more attention to applications, performance, and price. They bought systems that were rich in functionality, but riddled with holes. The security on the Internet was aptly compared to “Swiss cheese.”

Today, it is widely recognized that our computers and networks are unlikely to ever be capable of preventing all attacks. They are just way too complex. Thousands of new vulnerabilities are reported to the Computer Emergency Response Team Coordination Center (CERT/CC) annually. We might significantly reduce the security flaws through good software development practices, but we cannot expect foolproof security as technology continues to advance at breakneck speeds. Further, the problems do not reside solely with the vendors; networks must also be properly configured and managed. This can be a daunting task given the vast and growing number of products that can be networked together and interact in unpredictable ways.

In the middle 1980s, a small group of us at SRI International began investigating an alternative approach to security. Recognizing the limitations of a strategy based solely on prevention, we began to design a system that could detect intrusions and insider abuse in real time as they occurred. Our research and that of others led to the development of intrusion detection systems. Also
in the 1980s, computer viruses and worms emerged as a threat, leading to software tools for detecting their presence. These two types of detection technologies have been largely separate but complementary. Intrusion detection systems focus on detecting malicious computer and network activity, while antiviral tools focus on detecting malicious code in files and messages.

To succeed, a detection system must know what to look for. This has been easier to achieve with viral detection than intrusion detection. Most antiviral tools work off a list containing the “signatures” of known viruses, worms, and Trojan horses. If any of the signatures are detected during a scan, the file or message is flagged. The main limitation of these tools is that they cannot detect new forms of malicious code that do not match the existing signatures. Vendors mitigate the exposure of their customers by frequently updating and distributing their signature files, but there remains a period of vulnerability that has yet to be closed.

With intrusion detection, it is more difficult to know what to look for, as unauthorized activity on a system can take so many forms and even resemble legitimate activity. In an attempt to not miss something that is potentially malicious, many of the existing systems sound far too many false or inconsequential alarms (often thousands per day), substantially reducing their effectiveness. Without a means of breaking through the false-alarm barrier, intrusion detection will fail to meet its promise.

This brings me to this book. The authors have made significant progress in our ability to distinguish malicious activity and code from that which is not. This progress has come from bringing machine learning and data mining to the detection task. These technologies offer a way past the false-alarm barrier and towards more effective detection systems.

The papers in this book address one of the most exciting areas of research in information security today. They make an important contribution to that area and will help pave the way towards more secure systems.

Monterey, CA

Dorothy E. Denning

January 2005
Machine Learning and Data Mining for Computer Security
Methods and Applications
Maloof, M.A. (Ed.)
2006, XVI, 210 p., Hardcover
ISBN: 978-1-84628-029-0