Contents

List of Figures ... xv
List of Tables .. xix

1 Manufacturing Systems: Trends, Classification, and Behavior Patterns 1
 1.1 Distributed Flexible Manufacturing Systems 2
 1.1.1 DFMS Properties .. 4
 1.1.2 DFMS Behaviour .. 7
 1.1.3 Organizational Paradigms 8
 1.1.4 Example of the Implementation of a Holonic Manufacturing System in Induction Motor Production. 10
 1.1.5 A Layered Approach to DFMS Modeling 13
 1.2 Manufacturing Control (MC) 14
 1.2.1 Definition of Manufacturing Control 14
 1.2.2 Manufacturing Control Functions 16
 1.2.3 Classification of Production Scheduling 18
 1.3 Scheduling and Resource Allocation 23
 1.3.1 Definition .. 23
 1.3.2 Mathematical Model for Job Shop Scheduling 24
 1.4 On-line Manufacturing Control 27
 1.4.1 Computational Complexity of Scheduling and Resource Allocation 28
 1.5 Algorithmic Approach to Problem Solution 28
 1.5.1 Greedy Heuristics .. 29
 1.5.2 Local Search Heuristics 30
 1.5.3 Off-line and On-line Algorithms 32
 1.6 Conclusions ... 33
2 On-Line Load Balancing ... 35
 2.1 Problem Definition ... 35
 2.2 Known Results and Existing Approaches 36
 2.2.1 The Greedy Approach 37
 2.2.2 The Robin-Hood Algorithm 39
 2.2.3 Tasks with Known Duration: the Assign1 Algorithm 41
 2.3 A Metaheuristic Approach 43
 2.4 Example .. 48
 2.5 Experimental Results .. 53
 2.5.1 A Multi-objective Approach in the Case of Known Task Departure Dates 57
 2.6 Conclusions .. 62

3 Resource Levelling .. 65
 3.1 Background and Problem Definition 65
 3.2 Resource Levelling and the Minimization of the Peak and the Makespan 68
 3.3 The Greedy Approach .. 75
 3.4 The Metaheuristic Approach 78
 3.4.1 Conceptual Comparison with Known Local Search Methods 79
 3.4.2 How to Control the Effect of the Minimization of the Makespan and the Frequency Based Memory 82
 3.5 Experimental Results .. 84
 3.5.1 Description of the Experiments 84
 3.5.2 Analysis of the Results 85
 3.5.3 Lower Bounds Comparison 87
 3.5.4 Comparison with Known Algorithms 90
 3.6 The Extension to the Case with Arbitrary Integer Duration 93
 3.7 Case Study 1 .. 95
 3.8 Case Study 2 ... 100
 3.9 Conclusions .. 103

4 Scheduling Jobs in Robotized Cells with Multiple Shared Resources ... 105
 4.1 Background and Problem Definition 105
 4.2 Problem Definition .. 107
 4.3 \textit{NP}-Completeness Result 109
 4.4 The Proposed Heuristic ... 110
 4.5 Computational Results .. 114
 4.6 Conclusions .. 120
5 Tool Management on Flexible Machines 121
 5.1 Background ... 121
 5.1.1 Definition of the Generic Instance 126
 5.1.2 Assumptions 126
 5.2 The Binary Clustering and the KTNS Approaches 127
 5.3 The Proposed Algorithms 130
 5.3.1 Algorithm 1 130
 5.3.2 Algorithm 2 135
 5.3.3 Algorithm 3 141
 5.3.4 Algorithm 4 148
 5.4 Computational Analysis 153
 5.4.1 Comparison with Tang and Denardo 153
 5.4.2 Comparison with Crama et al. 155
 5.4.3 Comparison Among the Proposed Algorithms 163
 5.5 Conclusions .. 168

Appendix A ... 171

Appendix B ... 193

Glossary .. 199

References ... 201

Index ... 215
Effective Resource Management in Manufacturing Systems
Optimization Algorithms for Production Planning
Caramia, M.; Dell'Omo, P.
2006, XXII, 216 p., Hardcover
ISBN: 978-1-84628-005-4