Contents

Preface ... vii
Acknowledgments .. ix
Contributors ... xi

1 Protein Nanotechnology: What Is It? ... 1
 Juliet A. Gerrard

Part I Old Proteins, New Tricks

2 Bioengineered Silk Proteins to Control Cell and Tissue Functions 19
 Rucsanda C. Preda, Gary Leisk, Fiorenzo Omenetto, and David L. Kaplan

3 Aqueous-Based Spinning of Fibers from Self-Assembling Structural Proteins 43
 Steven Arcidiacono, Elizabeth A. Welsh, Jason W. Soares

4 Fibrous Protein Nanofibers ... 61
 Jeffrey E. Plowman, Santanu Deb-Choudhury, and Jolon M. Dyer

5 Self-Assembling Nanomaterials: Monitoring the Formation of Amyloid Fibrils, with a Focus on Small-Angle X-Ray Scattering 77
 Elizabeth B. Sawyer and Sally L. Gras

6 Amyloid Fibrils from Readily Available Sources: Milk Casein and Lens Crystallin Proteins 103
 Heath Ecroyd, Megan Garvey, David C. Thorn, Juliet A. Gerrard, and John A. Carver

7 Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins 119
 Vanessa K. Morris and Margaret Sunde

8 Proteins and Peptides as Biological Nanowires: Towards Biosensing Devices 131
 Laura J. Domigan

9 Nanotechnology with S-Layer Proteins ... 153
 Bernhard Schuster and Uwe B. Sleytr

Part II New Proteins

10 Stimuli-Responsive Peptide Nanostructures at the Fluid–Fluid Interface 179
 Chun-Xia Zhao and Anton P.J. Middelberg

11 Designed Self-Assembling Peptides as Templates for the Synthesis of Metal Nanoparticles 195
 Emmanouil Kasotakis and Anna Mitraki
12 Purification of Molecular Machines and Nanomotors Using Phage-Derived Monoclonal Antibody Fragments 203
Olga Esteban, Daniel Christ, and Daniela Stock

13 Determination of Enzyme Thermal Parameters for Rational Enzyme Engineering and Environmental/Evolutionary Studies. 219
Charles K. Lee, Colin R. Monk, and Roy M. Daniel

PART III Tools of the Trade

14 Rational-Based Protein Engineering: Tips and Tools 233
Meghna Sobti and Bridget C. Mabbutt

15 Construction and Analysis of Randomized Protein-Encoding Libraries Using Error-Prone PCR ... 251
Paulina Hanson-Manful and Wayne M. Patrick

16 Droplets as Reaction Compartments for Protein Nanotechnology 269
Sean R.A. Devenish, Miriam Kaltenbach, Martin Fischlechner, and Florian Hollfelder

17 Label-Free, Real-Time Interaction and Adsorption Analysis 1: Surface Plasmon Resonance ... 287
Conan J. Fee

18 Label-Free, Real-Time Interaction and Adsorption Analysis 2: Quartz Crystal Microbalance ... 313
Conan J. Fee

19 Atomic Force Microscopy for Protein Nanotechnology 323
Dmitry V. Sokolov

Index ... 369
Protein Nanotechnology
Protocols, Instrumentation, and Applications, Second Edition
Gerrard, J.A. (Ed.)
2013, XV, 371 p., Hardcover
ISBN: 978-1-62703-353-4
A product of Humana Press