Chapter 2

Mechanism of Mo-Dependent Nitrogenase

Zhi-Yong Yang, Karamatullah Danyal, and Lance C. Seefeldt

Abstract

Nitrogenase is the enzyme responsible for biological reduction of dinitrogen (N\textsubscript{2}) to ammonia, a form usable for life. Playing a central role in the global biogeochemical nitrogen cycle, this enzyme has been the focus of intensive research for over 60 years. This chapter provides an overview of the features of nitrogenase as a background to the subsequent chapters of this volume that detail the many methods that have been applied in an attempt to gain a deeper understanding of this complex enzyme.

Key words: Nitrogen fixation, Fe protein, MoFe protein, mechanism, metalloenzyme, MgATP.

1. Nitrogen Fixation

Dinitrogen (N\textsubscript{2}) is the major constituent (79%) of the Earth’s atmosphere, representing the largest global pool of nitrogen (N). While nitrogen is essential to all life, the vast reservoir of dinitrogen in the atmosphere is unusable by most organisms (1, 2). This is largely a consequence of the high bond dissociation energy for the N\textsubscript{2} triple bond (3), making the breaking of this bond and “fixation” of the nitrogen to forms usable to living organisms energetically challenging. Dinitrogen can be fixed with considerable energy input by addition of electrons and protons to yield two ammonia (NH\textsubscript{3}) molecules. In the industrial Haber–Bosch process for fixing dinitrogen, the reaction is carried out at high temperatures (~450°C) and pressures (>200 atm) in the presence of an iron catalyst, with the electrons and protons coming from H\textsubscript{2} (1, 4–6). This process is extremely energy demanding, utilizing approximately 1% of the total fossil fuel used globally (7).
The other major pathway for reduction of dinitrogen is through the action of select microorganisms (called diazotrophs) that carry out a process called biological nitrogen fixation (6, 8). The first step in the assimilation of N\textsubscript{2} by these organisms is the reduction of N\textsubscript{2} to two ammonia molecules catalyzed by a complex metalloenzyme called nitrogenase (9, 10). Nitrogenases occur across a wide range of microbes and sequencing of the nitrogenase genes (nif genes) reveals considerable sequence diversity among the enzymes (10–12). Despite this sequence diversity, the majority of nitrogenases share some common features. For example, most enzymes are composed of two component proteins: a large component having at least an α\textsubscript{2}β\textsubscript{2} subunit composition and a smaller component having a γ\textsubscript{2} subunit composition. All known nitrogenases contain iron–sulfur clusters in both component proteins. The site of N\textsubscript{2} binding and reduction is one of the iron–sulfur clusters contained in the larger component protein. This active site metal cluster can contain, in addition to Fe atoms, a heterometal atom (Mo or V) (9, 10, 13, 14). The best studied nitrogenase is the Mo-dependent enzyme, which appears to be the paradigm for nitrogenases (9, 13, 15–21). Given that most of the mechanistic information known about nitrogenases is for the Mo-based enzyme, this chapter will focus on this enzyme. Other nitrogenases, sometimes called alternative nitrogenases, are reviewed elsewhere (10, 12).

2. Mo-Dependent Nitrogenase: Overview

The two component proteins of the Mo-dependent nitrogenase are called the iron (Fe) protein (or dinitrogenase reductase) and the molybdenum–iron (MoFe) protein (or dinitrogenase) ([Fig. 2.1](#)). These two component proteins work together to catalyze the reduction of dinitrogen in a complex reaction with an ideal reaction stoichiometry shown as follows (22):

\[
N_2 + 8e^- + 16MgATP + 8H^+ \rightarrow 2NH_3 + H_2 + 16MgADP + 16P_i \tag{[1]}
\]

A breakthrough in understanding nitrogenase came from the X-ray crystal structures of the component proteins solved individually (23–42) and when bound together (43–46). The Fe protein, the only known reductant of the MoFe protein that can support substrate reduction, is a homodimer that contains two nucleotide (MgATP or MgADP) binding sites, one on each subunit, and a single [4Fe–4S] cluster that bridges the two subunits ([Fig. 2.1](#)) (25). The MoFe protein is an α\textsubscript{2}β\textsubscript{2}
Mechanism of Mo-Dependent Nitrogenase

Fig. 2.1. Crystal structure of the Fe and MoFe protein components of Mo-dependent nitrogenase showing the nucleotides, metal clusters, and electron transfer pathways. (Left) Cartoon representation of MoFe protein (pdb code: 1M1N) with the \(\alpha \)-subunits and the \(\beta \)-subunits and Fe protein (pdb code: 1FP6) with the \(\gamma \)-subunits. (Right) Structures of MgADP and the three metalloclusters of nitrogenase. The figure was generated using the computer program PyMol.

heterotetramer. Each \(\alpha \beta \) dimeric unit contains two unique metalloclusters: a P-cluster ([8Fe–7S]) and an FeMo cofactor ([7Fe-9S-Mo-X-(R)-homocitrate]) (Fig. 2.1) (27, 28, 47). Each \(\alpha \beta \)-unit appears to function as a catalytic unit independent of the other \(\alpha \beta \) pair. During the catalytic cycle, an Fe protein binds transiently to one MoFe protein \(\alpha \beta \) unit. During this encounter, one electron is transferred from the [4Fe–4S] cluster of the Fe protein to the MoFe protein. This electron transfer step is coupled to the hydrolysis of a minimum of two MgATP molecules (16, 48). Following electron transfer and ATP hydrolysis, the Fe protein disengages from the MoFe protein and a new Fe protein binds in its place to repeat the cycle. Given that only one electron is transferred per cycle, a minimum of eight encounters must occur to reduce \(\text{N}_2 \) (equation [1]).

2.1. Fe Protein

The Fe protein is a homodimer (coded for by the \textit{nifH} gene) with a molecular mass of approximately 64,000 Da (25, 49). In addition to delivering electrons to the MoFe protein, the Fe protein also is known to function in the maturation of the MoFe
protein and in the bioassembly of the active site metal cluster called FeMo cofactor (49, 50). This maturation role for the Fe protein does not appear to require electron transfer or the ATP hydrolysis function (9) and is covered in another chapter of this volume.

2.1.1. Redox Properties of the [4Fe–4S] Cluster

The Fe protein contains a single [4Fe–4S] cluster that serves as a carrier of electrons. The X-ray structure of the Fe protein revealed that this cluster is symmetrically ligated between the two Fe protein subunits, with each subunit contributing two cysteine ligands (Fig. 2.1). The [4Fe–4S] is known to access three redox states (9, 21):

\[
[\text{[4Fe-4S]}^{2+}] \quad E_m = -300 \text{mV} \quad [\text{[4Fe-4S]}^{1+}] \quad E_m = -790 \text{mV} \quad [\text{[4Fe-4S]}^0] \quad \text{[2]}
\]

The [4Fe–4S]^{2+/1+} redox couple is operational during substrate reduction supported by reductants such as dithionite or ferredoxin (9, 51, 52). A more reduced (0) oxidation state (termed the “all-ferrous” state) can be achieved in vitro by incubating the Fe protein with reductants with very negative potentials (e.g., Ticitrate) (53–57). It has been demonstrated that the all-ferrous state can participate in the delivery of electrons to the MoFe protein when strong reductants are used (58). However, the role of this all-ferrous state during catalysis in vivo remains unknown.

The 1+ oxidation state (Fe^{Red}) of the [4Fe–4S] cluster is the dominant state in the as-purified enzyme in the presence of the reductant dithionite (S_2O_4^{2−}) (59–61). This oxidation state of the Fe protein is paramagnetic, with the four Fe atoms distributed as 3Fe^{2+} and 1Fe^{3+}. This state gives rise to an EPR spectrum at low temperatures (~5 K) that has been assigned as a mixture of two spin states (S = 1/2 and S = 3/2 spin). This mixed spin state has been confirmed in the Mössbauer and MCD spectra. The ratio of the two spin states can be shifted by addition of other reagents such as urea or glycerol into the sample solution (61).

The 1+ oxidation state of the [4Fe–4S] cluster can be reversibly oxidized by the removal of one electron, achieving the 2+ oxidation state (Fe^{Ox}), with the iron atoms distributed as 2Fe^{2+} and 2Fe^{3+} (54, 61, 62). This oxidation state of the [4Fe–4S] cluster is diamagnetic and therefore is EPR silent. The oxidation of the [4Fe–4S] cluster from the 1+ to the 2+ oxidation state can be achieved by the treatment of the Fe protein with redox-active dyes of sufficiently positive potential (e.g., thionine, methylene blue, and indigo disulfonate) (54, 63), whereas reduction from the 2+ to the 1+ oxidation state can be achieved by the addition of a number of reductants (e.g., dithionite) (64). This reversibility allows the establishment of the midpoint reduction potential (E_m) for the [4Fe–4S]^{2+/1+} redox couple using
Mechanism of Mo-Dependent Nitrogenase

Voltammetric and coulometric methods (65–67). The values of E_m are dependent on the organism from which the Fe protein is purified and the presence or absence of bound nucleotides (9). The E_m for the \([4\text{Fe}–4\text{S}]^{2+/1+}\) couple of the Fe protein from \textit{Azotobacter vinelandii} is measured to be $–300$ mV in the absence of nucleotides (equation [2]) (62, 68). When MgATP is added to the protein, the E_m value shifts more negative to $–430$ mV (68). MgADP shifts the E_m to $–440$ mV (68).

It is well established from kinetic and spectroscopic studies that the \([4\text{Fe}–4\text{S}]^{2+/1+}\) redox couple of the \([4\text{Fe}–4\text{S}]\) cluster in the Fe protein is functional during the catalytic cycle of nitrogenase (9, 16, 21). While the Fe protein in the 1+ oxidation state is bound to the MoFe protein, an electron is transferred from the Fe protein to the MoFe protein, resulting in oxidation of the \([4\text{Fe}–4\text{S}]\) cluster to the 2+ oxidation state. The consensus model requires the oxidized Fe protein (2+) to dissociate from the MoFe protein and for the \([4\text{Fe}–4\text{S}]\) cluster to be reduced back to the 1+ oxidation state by a reduced electron carrier protein (e.g., flavodoxin or ferredoxin) (51, 52), thereby readying the Fe protein for another round of electron transfer to the MoFe protein.

2.1.2. The Fe Protein Binds Nucleotides

Early work on nitrogenase revealed that the Fe protein could bind nucleotides and that the hydrolysis of nucleotides by the nitrogenase complex was critical to the transfer of an electron from the Fe protein to the MoFe protein (16, 69). The Fe protein binds two nucleotides, one to each subunit. The nucleotide binding sites on the Fe protein are on the opposite end of the Fe protein from the \([4\text{Fe}–4\text{S}]\) cluster (30, 31, 37, 38, 41, 43–46). The dissociation constants (K_d) for nucleotide binding to Fe protein have been determined by a number of techniques (70). Recent studies using isothermal titration calorimetry have supported earlier studies showing that the redox state of the \([4\text{Fe}–4\text{S}]\) cluster impacts the affinity for nucleotide binding (71). The 2+ oxidation state binds MgATP with the highest affinity ($K_d = 45 \mu$M), while the 1+ oxidation state has a lower affinity ($K_d = 500 \mu$M) for this nucleotide. Further, these studies have revealed positive cooperativity in the binding of the two nucleotides to both the reduced and oxidized states of the Fe protein (72). For the reduced state (Fe^{Red}) the K_d values for the binding of the first and second MgATP molecules are reported to be $K_{d1} = 500 \mu$M and $K_{d2} = 170 \mu$M, respectively. A divalent metal is required for the binding of nucleotides to the Fe protein. While a number of different metals will work, it is thought that Mg$^{2+}$ is the physiologically relevant metal (73). The Fe protein can also bind other nucleotide tri- and di-phosphates (e.g., GTP and GDP) with reasonable affinity, although it is widely believed that ATP and ADP are the relevant nucleotides in vivo (74).
While the Fe protein binds MgATP, it shows undetectable rates of hydrolysis in the absence of the MoFe protein (21). It is only after the Fe protein binds to the MoFe protein that hydrolysis is activated. This observation has been explained from examination of X-ray structures of the Fe protein with bound nucleotides as the movement of a likely catalytic base into place to activate hydrolysis following Fe protein binding to the MoFe protein. A detailed understanding of the specific interactions of nucleotides with the Fe protein has been achieved from the X-ray structures of Fe proteins in various nucleotide-bound states (43–46).

There is ample evidence showing that the binding of nucleotides to the Fe protein induces conformational changes to the protein structure that impact many aspects of its function. For example, the binding of MgATP or MgADP to the Fe protein shifts the E_m for the $[4\text{Fe}–4\text{S}]^{2+/1+}$ redox couple to more negative potentials by about $–120$ mV (described above). Many other methods also reveal that nucleotides change the properties of the $[4\text{Fe}–4\text{S}]$ cluster (16, 21). What is clear is that these changes are not the result of nucleotides binding directly to the $[4\text{Fe}–4\text{S}]$ cluster, but rather a result of nucleotide-induced protein conformational changes impacting the cluster over a distance. The nucleotide binding sites are located approximately 15 Å away from the $[4\text{Fe}–4\text{S}]$ cluster (30, 31, 37, 38, 41, 43–46). While a number of studies report changes in the electronic properties of the $[4\text{Fe}–4\text{S}]$ cluster as a result of nucleotides binding to the Fe protein, it is more recent studies using both small angle X-ray scattering (SAXS) (75) and X-ray crystallography that are providing clearer pictures of the larger structural changes induced in the Fe protein upon nucleotide binding. These are reviewed in other chapters of this volume.

The MoFe protein is an $\alpha_2\beta_2$ heterotetramer ($M_r \sim 250,000$ Da) with the α and β subunits encoded by the nifD and nifK genes, respectively (9, 49). Each $\alpha\beta$-dimeric catalytic unit contains one active site metallocluster, the FeMo cofactor ([7Fe-9S-Mo-X-(R)-homocitrate]) (76) and one electron carrier cluster, the P-cluster ([8Fe–7S]). The X-ray crystal structure of the MoFe protein reveals that the FeMo cofactor is embedded solely in the α-subunit, while the P-cluster is located at the interface between the α and β subunits (23, 24). Several structures of the complex of the Fe protein bound to the MoFe protein reveal the interfaces where the Fe protein and MoFe protein dock (43–46). These structures place the P-cluster directly in-line and between the Fe protein $[4\text{Fe}–4\text{S}]$ cluster and the FeMo cofactor (Fig. 2.1). The distance between the $[4\text{Fe}–4\text{S}]$ cluster and the P-cluster varies depending on the nucleotide-bound state of the Fe protein,
leading to a model wherein one role of nucleotides is to alter this electron transfer distance and therefore the electron transfer rate. The arrangement of the three metalloclusters suggests an electron transfer chain from the [4Fe–4S] cluster to the P-cluster and finally to the FeMo-cofactor active site (46).

2.2.1. P-Clusters

Early Mössbauer spectroscopic studies of the MoFe protein revealed that the P-cluster was composed of eight ferrous Fe atoms in the resting state in the presence of dithionite (termed the \(P^N\) state) (77). The X-ray structures revealed the nature of this unusual cluster (Fig. 2.2) as being composed of two cubic [4Fe–4S] subclusters sharing a common sulfide ligand at one corner (23, 24, 27, 33, 42). Each Fe atom is coordinated by two or three sulfide ligands and one terminal or bridging cysteinyl ligand from a cysteine residue in the \(\alpha\) or \(\beta\) subunit. Upon oxidation of the MoFe protein, the P-cluster is oxidized by one or two electrons, which results in significant structural rearrangement (33, 42). Upon oxidation, one of the cubic units is opened up with two Fe–S bonds (Fe5–S1 and Fe6–S1) being cleaved and two novel Fe6–O and Fe5–N bonds being formed. Further, a serinate-O (\(\beta\)-188Ser) and a backbone amide-N (\(\alpha\)-88Cys) become ligands to Fe atoms (Fig. 2.2) (42).

From in vitro studies using dye oxidants, it has been shown that the resting state of the P-cluster (\(P^N\)) can be oxidized by up to three electrons (\(P^{1+}\), \(P^{2+}\), and \(P^{3+}\)) (equation [3]) (78–81). The \(E_m\) values measured for these redox couples are shown for the \(A.\ vinelandii\ MoFe\) protein as follows (62, 82, 83):

\[
\begin{align*}
\text{p}^{\text{Red}} & \rightarrow \text{p}^{N} \rightarrow P^{1+} \rightarrow P^{2+} \rightarrow P^{3+} \\
E_m (\text{mV}) & = -309 -309 +90
\end{align*}
\]

[3]

The \(P^{1+}\) and \(P^{2+}\) oxidation states are often collectively referred to as the \(P^{\text{Ox}}\) oxidation state, because both oxidation states are
usually populated in oxidized states of the MoFe protein. The P^{3+} oxidation state is not reversible and so is not believed to be functioning during catalysis. More reduced states of the P-cluster from the P^N state have not been observed and seem unlikely given that such a reduction would require reducing Fe atoms beyond the ferrous oxidation state. The E_m for P^{2+}/P^{1+} redox couple is pH-dependent, shifting E_m by -53 mV per increase of one pH unit (84). The relevance of this pH dependence is not known, but would be consistent with the coupling of proton and electron transfer reactions involving this cluster.

The FeMo cofactor (76), also called the M-cluster, is embedded in each α subunit of the MoFe protein. The structure of FeMo cofactor was resolved when the X-ray structure of the MoFe protein was solved (47). The structure revealed a heterometallocluster with a composition $[7\text{Fe}-9\text{S}-\text{Mo-X-}({R})-\text{homocitrate}]$ (Fig. 2.3) (28). The cluster is ligated to the peptide matrix through one cysteine ligand (α-275Cys) bound to the Fe atom at one end and through one histidine ligand (α-442His) bound to the Mo atom at the other end. The six Fe atoms in the middle part are arranged as a prismatic structure with each Fe atom coordinated by three sulfide atoms. Recent high-resolution structures of the MoFe protein have revealed the presence of a light atom (C, N, or O) at the center of the Fe cage of unknown identity (designated as X) that is presumed to be bound to each of the central six Fe atoms (28). Homocitrate provides two oxygen atom (C1 carboxylate and C3 hydroxylate) ligands to the Mo (85). Thus, the overall structure of the FeMo cofactor can be viewed as one $[4\text{Fe}-3\text{S}-X]$.
cubane and one $[\text{Mo-3Fe-3S-X}]$ cubane that are connected by three bridging sulfides with one shared μ_6-X atom at the center.

Identifying the central atom X has proven difficult (69). ENDOR studies have suggested that it is not an exchangeable N atom, but have left open the possibility that it is a non-exchanging N atom (86–88). A vibrational spectroscopy technique (nuclear resonance vibrational spectroscopy or NRVS) supports the presence of a light atom at the center of the Fe cage, but does not resolve the identity of X (89). Likewise, a number of calculations support the presence of X, but do not provide a definitive assignment for X (90–93). To date, there remains no experimental evidence showing the involvement of X in the catalytic cycle of nitrogenase. Obviously, understanding X and its roles in catalysis remains a significant challenge for the field.

FeMo cofactor can be reversibly oxidized or reduced from its resting state. The resting state of FeMo cofactor (M^N) occurs in the MoFe protein isolated in the presence of dithionite. This state is paramagnetic with a rhombic $S = 3/2$ spin EPR signal (94). Treatment of the MoFe protein with oxidizing dyes results in the one-electron oxidation to the M^{Ox} state (77, 78). The M^{Ox} state is diamagnetic ($S = 0$) and EPR silent. The E_m for the M^{Ox}/N redox couple is about -40 mV (95). The M^N state can be reduced. Incubation with the Fe protein in the presence of MgATP and dithionite results in the reduction of FeMo cofactor to an M^R state with an integer spin ($S > 1$) state that is EPR silent (96, 97). The E_m for the M^N/R redox couple has not been measured, but has been estimated as -465 mV (98). The oxidation states of the Fe atoms and the Mo atom in the resting state of FeMo cofactor (M^N) have been examined by Mössbauer and ENDOR spectroscopies. The Mössbauer study suggested an assignment of $[\text{Mo}^{4+}, 3\text{Fe}^{3+}, 4\text{Fe}^{2+}, 9\text{S}^{2-}]$ (97), which is supported by calculations using a model with the interstitial X atom (99). The 57Fe ENDOR study suggested an assignment of $[\text{Mo}^{4+}, 1\text{Fe}^{3+}, 6\text{Fe}^{2+}, 9\text{S}^{2-}]$ for the resting state FeMo cofactor (100). This later assignment is consistent with the result from calculations on the FeMo cofactor without an interstitial X atom (90). FeMo cofactor must accept multiple electrons (two or more) to complete the reduction of substrates. How these electrons are accumulated on FeMo cofactor is not known. Possible distribution between the P-clusters, FeMo cofactor, and bound intermediates remains to be established.

FeMo cofactor can be extracted from the MoFe protein into organic solvents (76, 101). A number of studies have been conducted on such extracted FeMo cofactor. While some properties of the cofactor in solvent are similar to those for the cofactor in the protein (e.g., EPR spectrum), others are quite different. For example, the reactivity of FeMo cofactor in solvent is different from that of FeMo cofactor bound to the protein (e.g., substrate reduction ability) (102).
A number of studies support FeMo cofactor as the site of substrate (and inhibitor) binding (19, 101), although the precise location of substrate binding is still being pursued (17–19). There are many possibilities for the substrate binding site: (1) the Mo atom; (2) one or more of the central Fe atom(s); and (3) some combination of Fe, S, and Mo atoms. Using spectroscopic methods such as ENDOR, there is growing evidence for binding of hydrides (103), alkynes (104, 105), and nitrogenous compounds (106–110) to one or more of the Fe atoms in the central portion of FeMo cofactor (Fig. 2.3). As yet, no experimental results have illustrated binding of any substrate or intermediate to Mo, although this possibility has not been ruled out.

An important tool to gaining insights into substrate binding to FeMo cofactor has been substitution of amino acids in the MoFe protein using site-directed mutagenesis. An early study examined the roles of α-195His in nitrogenase catalysis (Fig. 2.3) (111–115). Substitution of the α-195His residue by glutamine resulted in a variant of the MoFe protein that cannot effectively reduce N_2 or azide (N_3^{-}), but which retained full rates of reduction of acetylene and protons. From these studies, it was concluded that α-195His might participate in delivery of protons during reduction of nitrogen-containing substrates. Slowing down proton delivery by substituting for α-195His has been exploited to trap presumed intermediate states during the reduction of a

![Table of Substrates](image)

Fig. 2.4. Some substrates for nitrogenase.
number of substrates including hydrazine (N₂H₄) (106, 107), diazene (HN = NH) (109), and methyldiazene (MeN = NH) (107, 108). It is clear that α-195His is not the sole source of protons for substrate reduction as the rates of reduction of other substrates remain undisturbed when this residue is substituted (115).

Recent work with MoFe proteins containing amino acid substitutions are providing solid evidence for the site of substrate binding on FeMo cofactor. These studies have recently been reviewed (13, 18, 19). While the physiological substrates for nitrogenase are N₂ and protons, a number of other small, multiple bonded compounds have been demonstrated to be substrates. These have been extensively reviewed elsewhere (9, 19, 21, 116). Several of the substrates are shown in Fig. 2.4.

3. Nitrogenase Mechanism

3.1. Fe Protein–MoFe Protein Complex Formation

An essential step in the nitrogenase mechanism occurs when the Fe protein, with two bound MgATP molecules, associates with the MoFe protein. This associated complex is fleeting, existing for about 1 s during normal substrate reduction (9). Several events occur while the two proteins are associated, including the hydrolysis of the two MgATP molecules to two MgADP and two Pi molecules and the transfer of one electron from the Fe protein to the MoFe protein. The order of these two events has not been definitively established and is the subject of current studies (19, 20).

The associated state of the nitrogenase complex has been trapped by a number of different approaches. Five different types of stable complexes that have been examined include the following:

1. A chemical cross-linked complex using a bifunctional chemical reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) (45, 117, 118).

2. A non-dissociating complex formed between the Fe protein from Clostridium pasteurianum and the MoFe protein from A. vinelandii (119–122).

3. A non-dissociating complex formed between an Fe protein with an amino acid deletion (Δ127Leu) and the MoFe protein that appears to mimic the ATP-bound state in the absence of ATP (44, 123).

4. A non-dissociating complex formed when ADP and AlF₄⁻ (or BeF₃⁻) are added to the Fe protein and MoFe protein. In this case, the AlF₄⁻ appears to be mimicking the departing phosphate following ATP hydrolysis (43, 124–127).
(5) Relatively stable complexes of the MoFe protein and the Fe protein with MgADP or β,γ-methylene MgATP bound or without nucleotide bound (46).

Analysis of these tight complexes by a number of different approaches, including X-ray crystallography, is providing insights into the nitrogenase complex such as the following:

(1) AlF_4^- occupies the binding site where the γ-phosphate portion of MgATP was expected to be (43, 46).

(2) The subunits of Fe protein are considerably reoriented during complex formation and nucleotide hydrolysis. The movement of two segments of amino acids in the Fe protein (called switches I and II) appears to connect to the [4Fe–4S] cluster, possibly controlling the nucleotide-induced changes in the properties of the [4Fe–4S] cluster (44, 46).

(3) There are several distinct and mutually exclusive interaction sites on the MoFe protein surface that are selectively populated, depending on the Fe protein nucleotide state (46).

(4) The distance between the Fe protein [4Fe–4S] cluster and the MoFe protein P-cluster changes by up to 5 Å depending on the nucleotide bound to the Fe protein (46).

(5) The E_m value of the [4Fe–4S] cluster and the P-cluster is shifted more negative when the two proteins are associated, favoring electron transfer from the Fe protein to the FeMo cofactor (123, 128).

3.2. Fe Protein Cycle

The Fe protein, being an ATP-dependent reductase of the MoFe protein, can be thought of as proceeding through a cycle during its function in the overall nitrogenase catalytic cycle (129, 130). This Fe protein cycle is summarized in Fig. 2.5. During nitrogenase catalysis, the reduced Fe protein, with the [4Fe–4S] cluster in its 1+ oxidation state, binds two MgATP molecules. The Fe protein in this state then associates with the MoFe protein (131). Within this complex, MgATP hydrolysis is activated and electron transfer occurs, followed by the dissociation of the two proteins. The spent Fe protein is reactivated by replacing MgADP with MgATP and reducing the 2+ oxidation state to the 1+ oxidation state (Fig. 2.5).

While the general features of the Fe protein cycle are known, several important details remain to be resolved. For example, how does complex formation activate MgATP hydrolysis and electron transfer? Which comes first, electron transfer or nucleotide hydrolysis? How specifically is the energy from nucleotide hydrolysis used in the nitrogenase reaction? What specifically is the role of the P-cluster in brokering electrons between the Fe protein
and the active site FeMo cofactor? These and many other questions need to be addressed in the coming years.

The MoFe protein must accumulate multiple electrons in order to achieve the reduction of bound substrates. The details of where and how these electrons are accumulated in the MoFe protein are not known (20). A simple notation to designate how many electrons have been transferred into the resting MoFe protein (designated as \(E_0 \)) is helpful (called the Lowe–Thornely model) (64, 132–134). This model does not differentiate electrons on the P-cluster from electrons on the FeMo cofactor (Fig. 2.6), but rather simply notes the number of electrons accumulated in the MoFe protein as \(E_1 \), \(E_2 \), etc., with the subscript indicating the number of electrons.

The results of a number of kinetic studies have allowed construction of a MoFe-protein cycle as shown in Fig. 2.6. As

Fig. 2.5. Fe–protein cycle showing the oxidation state changes and MgATP hydrolysis. Abbreviations used are FeP\(^{Ox} \) for oxidized Fe protein, FeP\(^{Red} \) for reduced Fe protein, MoFeP for the oxidation state of MoFe protein before reduction, and MoFeP\(^{Red} \) for one more electron reduced state of MoFe protein.

Fig. 2.6. Modified Lowe–Thorneley kinetic scheme for reduction of \(\text{N}_2 \). In this scheme, the \(E_n \) represents one functional \(\alpha \beta \) dimeric unit, which has been reduced by \(n \) electrons relative to the resting state \(E_0 \).
noted in the cycle, there is good evidence indicating that different substrates bind to different reduction states (E_n) of the MoFe protein. Dinitrogen is modeled to bind to E_3 or E_4 states (64), which is accompanied by the release of one equivalent of H_2 (22, 135). In the absence of N_2, the less reduced E_1 and E_2 states are achieved, which are sufficient for proton binding and reduction to H_2. The non-physiological substrate acetylene is modeled to bind to the E_2 state for reduction to ethylene. The binding of different substrates to different redox states of the MoFe protein can result in confusing inhibition patterns. For example, the inhibition of N_2 reduction by acetylene appears to be non-competitive, while the inhibition of acetylene reduction by N_2 appears to be competitive (136). This apparent contradiction can be explained by the fact that acetylene binds to the E_2 state whereas N_2 binds to more reduced states (64, 137). Thus, acetylene appears to be a non-competitive inhibitor of N_2 reduction and N_2 a competitive inhibitor of acetylene reduction.

Insights into where and to what states of FeMo-cofactor substrates and inhibitors bind have come in recent years from the characterization of freeze-trapped MoFe protein during turnover with substrates or inhibitors. The inhibitor carbon monoxide (CO) has been extensively characterized trapped to FeMo cofactor (100, 138–142). Application of a variety of spectroscopic methods to this trapped state has revealed that at low CO concentrations, a single CO is likely bound bridging between two Fe atoms. At high CO concentrations, two CO molecules are proposed to be bound.

Amino acid substitutions in the MoFe protein have been used, along with freeze trapping to capture a number of different substrates bound as intermediates to FeMo cofactor. The MoFe protein variant, the substrate, and the g values of the EPR spectrum observed are summarized in Table 2.1. How these states are trapped is discussed in more detail in another chapter of this volume.

Some of the key findings from characterization of these trapped states include the following:

1. A hydride-trapped state is consistent with two hydrides bound to Fe atoms in FeMo cofactor (106).

2. The substrate propargyl alcohol and other alkyne substrates have been trapped bound side-on to one or more Fe atoms (104, 105, 143).

3. Intermediates have been trapped starting from the nitrogenous substrates hydrazine, diazene, methyl diazene, and N_2. These intermediates appear to be bound end-on to Fe atom(s) (106–110).

4. A specific Fe atom in the central portion of FeMo cofactor has been identified as the likely site of binding of several substrates tested so far (110, 143).
Table 2.1
Important variants of MoFe protein and EPR parameters of the resulting intermediates with different substrates in the turnover state

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Substrate</th>
<th>EPR parameter</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>Dinitrogen (N₂)</td>
<td>$S = 1/2, \gamma = 2.08, 1.99, 1.97$</td>
<td>(107, 110)</td>
</tr>
<tr>
<td>α-70Val→Ala</td>
<td>Propargyl alcohol</td>
<td>$S = 1.2, \gamma = 2.12, 2.00, 1.99$</td>
<td>(104, 105)</td>
</tr>
<tr>
<td>α-70Val→Ile</td>
<td>Proton (H⁺)</td>
<td>$S = 1/2, \gamma = 2.14, 2.00, 1.96$</td>
<td>(103)</td>
</tr>
<tr>
<td>α-195His→Gln</td>
<td>Methylidiazene</td>
<td>$S = 1.2, \gamma = 2.08, 2.02, 1.99$</td>
<td>(107, 108)</td>
</tr>
<tr>
<td>α-70Val→Ala/α-195His→Gln</td>
<td>Diazene (HN=NH)</td>
<td>$S = 1/2, \gamma = 2.09, 2.01, 1.93$</td>
<td>(109)</td>
</tr>
<tr>
<td>α-70Val→Ala/α-195His→Gln</td>
<td>Hydrazine (NH₂–NH₂)</td>
<td>$S = 1/2, \gamma = 2.09, 2.01, 1.93$</td>
<td>(106, 107)</td>
</tr>
</tbody>
</table>

These studies have advanced our understanding of where and how substrates interact with the nitrogenase active site. Many other questions remain to be resolved, such as

1. Is the N–N bond broken in the trapped nitrogenous species characterized so far?
2. What is the level of reduction of the trapped states?
3. What is the level of proton addition to the trapped states?
4. Do intermediates migrate among the metals (Fe and Mo) during the course of substrate reduction?

Answers to these and many other open questions will greatly advance our understanding of this complex enzyme.

4. Conclusions and Perspectives

Nitrogenase is a complex enzyme that plays a central role in the global N cycle. Great strides have been achieved since its first discovery to understand many facets of this complex system. These advances are largely the result of the application of a wide range of methods, many of which are described in this volume. Clearly, much remains to be resolved about the mechanism of nitrogenase. Future advances will come from the application of the methods summarized in this volume, coupled with application of many new methods. While the prospects for advancing understanding of nitrogenase going forward are good, these advances are not likely to come easily.
Acknowledgments

The authors acknowledge the long collaboration with the Brian Hoffman and Dennis Dean laboratories in advancing understanding of nitrogenase. Work in the laboratory of the authors is supported by a generous grant from the National Institutes of Health (GM59087).

References

41. Jeong MS, Jang SB (2004) Structural basis for the changes in redox potential in the nitrogenase Phe135Trp Fe protein with MgADP bound. Mol Cells 18: 374–382

Nitrogen Fixation
Methods and Protocols
Ribbe, M.W. (Ed.)
2011, X, 326 p. 72 illus., Hardcover
A product of Humana Press