Contents

Preface ... \(v \)

Contributors \(xi \)

SECTION I: YEAST SYSTEMS BIOLOGY

1. Yeast Systems Biology: The Challenge of Eukaryotic Complexity 3
 Juan I. Castrillo and Stephen G. Oliver

SECTION II: EXPERIMENTAL SYSTEMS BIOLOGY: HIGH-THROUGHPUT GENOME-WIDE AND MOLECULAR STUDIES

2. *Saccharomyces cerevisiae*: Gene Annotation and Genome Variability, State of the Art Through Comparative Genomics ... 31
 Ed Louis

3. Genome-Wide Measurement of Histone H3 Replacement Dynamics in Yeast 41
 Oliver J. Rando

4. Genome-Wide Approaches to Studying Yeast Chromatin Modifications 61
 Dustin E. Schones, Kairong Cui, and Suresh Cuddapah

5. Absolute and Relative Quantification of mRNA Expression (Transcript Analysis) . 73
 Andrew Hayes, Bharat M. Rash, and Leo A.H. Zeef

6. Enrichment of Unstable Non-coding RNAs and Their Genome-Wide Identification .. 87
 Helen Neil and Alain Jacquier

7. Genome-Wide Transcriptome Analysis in Yeast Using High-Density Tiling Arrays .. 107
 Lior David, Sandra Clauder-Münster, and Lars M. Steinmetz

8. RNA Sequencing .. 125
 Karl Waern, Ugrappa Nagalakshmi, and Michael Snyder

9. Polyadenylation State Microarray (PASTA) Analysis 133
 Traude H. Beilharz and Thomas Preiss

10. Enabling Technologies for Yeast Proteome Analysis 149
 Johanna Rees and Kathryn Lilley

 Amy J. Claydon and Robert J. Beynon

12. Protein–Protein Interactions and Networks: Forward and Reverse Edgetics 197
 Benoît Charleoteaux, Quan Zhong, Matija Dreze, Michael E. Cusick, David E. Hill, and Marc Vidal
13. Use of Proteome Arrays to Globally Identify Substrates for E3 Ubiquitin Ligases ... 215
 Avinash Persaud and Daniela Rotin

 Catherine L. Winder and Warwick B. Dunn

15. The Automated Cell: Compound and Environment Screening System (ACCESS) for Chemogenomic Screening 239
 Michael Proctor, Malene L. Urbanus, Eula L. Fung,
 Daniel F. Jaramillo, Ronald W. Davis, Corey Nislow,
 and Guri Giaever

 Daniela Delneri

17. Fluorescence Fluctuation Spectroscopy and Imaging Methods for Examination of Dynamic Protein Interactions in Yeast 283
 Brian D. Slaughter, Jay R. Unruh, and Rong Li

18. Nutritional Control of Cell Growth via TOR Signaling in Budding Yeast 307
 Yuehua Wei and X.F. Steven Zheng

SECTION III: COMPUTATIONAL SYSTEMS BIOLOGY: COMPUTATIONAL STUDIES AND ANALYSES

19. Computational Yeast Systems Biology: A Case Study for the MAP Kinase Cascade .. 323
 Edda Klipp

20. Standards, Tools, and Databases for the Analysis of Yeast ‘Omiccs Data 345
 Axel Kowald and Christoph Wierling

21. A Computational Method to Search for DNA Structural Motifs in Functional Genomic Elements .. 367
 Stephen C.J. Parker, Aaron Harlap, and Thomas D. Tullius

22. High-Throughput Analyses and Curation of Protein Interactions in Yeast 381
 Shoshana J. Wodak, Jim Vlasblom, and Shuye Pu

 Yitzhak Pilpel

24. Genome-Scale Integrative Data Analysis and Modeling of Dynamic Processes in Yeast ... 427
 Jean-Marc Schwartz and Claire Gaugain

25. Genome-Scale Metabolic Models of Saccharomyces cerevisiae 445
 Intawat Nookaew, Roberto Olivares-Hernández, Sakarinindr Bhumiratana, and Jens Nielsen
26. Representation, Simulation, and Hypothesis Generation in Graph and Logical Models of Biological Networks 465
 Ken Whelan, Oliver Ray, and Ross D. King

27. Use of Genome-Scale Metabolic Models in Evolutionary Systems Biology 483
 Balázs Papp, Balázs Szappanos, and Richard A. Notebaart

SECTION IV: YEAST SYSTEMS BIOLOGY IN PRACTICE: SACCHAROMYCES CEREVISIAE AS A TOOL FOR MAMMALIAN STUDIES

28. Contributions of Saccharomyces cerevisiae to Understanding Mammalian Gene Function and Therapy 501
 Nianshu Zhang and Elizabeth Bilsland

Subject Index 525
Yeast Systems Biology
Methods and Protocols
Castrillo, J.I.; Oliver, S.G. (Eds.)
2011, XIV, 535 p. 85 illus., 2 illus. in color., Hardcover
ISBN: 978-1-61779-172-7
A product of Humana Press