RNA Structure Determination by NMR

Lincoln G. Scott and Mirko Hennig

Abstract

This chapter reviews the methodologies for RNA structure determination by liquid-state nuclear magnetic resonance (NMR). The routine production of milligram quantities of isotopically labeled RNA remains critical to the success of NMR-based structure studies. The standard method for the preparation of isotopically labeled RNA for structural studies in solution is in vitro transcription from DNA oligonucleotide templates using T7 RNA polymerase and unlabeled or isotopically labeled nucleotide triphosphates (NTPs). The purification of the desired RNA can be performed by either denaturing polyacrylamide gel electrophoresis (PAGE) or anion-exchange chromatography. Our basic strategy for studying RNA in solution by NMR is outlined. The topics covered include RNA resonance assignment, restraint collection, and the structure calculation process. Selected examples of NMR spectra are given for a correctly folded 30 nucleotide-containing RNA.

Key words: RNA, RNA synthesis, RNA purification, NMR, resonance assignment, structure determination.

1. Introduction

RNA continues to surprise the scientific community with its rich structural diversity and unanticipated biological functions, including catalysis and the regulation of gene expression. Knowledge of the three-dimensional structure of biological macromolecules is indispensable for describing and understanding the underlying determinants of molecular recognition. RNA-ligand recognition generally occurs by “induced-fit” rather than by rigid “lock-and-key” docking (1, 2). These recognition processes apparently necessitate conformational flexibility for which liquid state NMR spectroscopy is uniquely suited to answer important questions in this area by looking at dynamic ensembles of structures.
Large quantities of RNA can be routinely prepared from either DNA template-directed \textit{in vitro} transcription using T7 RNA polymerase (as well as T3 or SP6), or phosphoramidite-based chemical synthesis. This chapter focuses on the \textit{in vitro} transcription method using T7 RNA polymerase, which is both more efficient, and cost effective (especially for RNAs >50 nucleotides) \cite{3, 4}. However, the disadvantages of \textit{in vitro} transcription include difficulties associated with the selective incorporation of isotopically labeled nucleotides or modified nucleotides, which are often functionally important.

The proliferation of RNA structure determinations using NMR spectroscopy is the combined result of:

1. The availability of efficient methods for isotopic labeling of RNA molecules, which permits heteronuclear experiments to be performed that resolve the severe spectral overlap inherent in proton spectra of RNAs.

2. The rapid development of pulse sequences tailored for RNA spin systems facilitating many structure determinations.

Severe spectral overlap in unlabeled RNA seriously limits the application of solution studies by NMR (Fig. 2.1). In contrast to the abundant 1H isotope, the naturally occurring nuclei 12C and 14N cannot be readily studied with high-resolution NMR techniques. The production of isotopically labeled RNA remains critical to the success of these NMR-based structure studies \cite{5} and a variety of synthetic methods have been developed for the routine production of isotopically labeled nucleotides. Labeled NTPs for \textit{in vitro} transcription reactions can be readily produced.

![Fig. 2.1. 1D 1H spectrum of the 30 nucleotide HIV-2 TAR RNA recorded in H\textsubscript{2}O. Typical 1H chemical shift ranges are indicated; solid black bars highlight exchangeable imino and amino protons, gray bars non-exchangeable base, and open bars non-exchangeable ribose protons.](image-url)
by enzymatic phosphorylation of ribonucleoside monophosphates (NMPs) isolated from bacteria such as *Methylophilus methylotrophus* or *E. coli* grown on 13C- and/or 15N enriched media. Optimized and detailed protocols for the preparation of labeled NTPs are published elsewhere and are not covered in this chapter (6–9). Alternatively, a variety of isotopically labeled NTPs are commercially available (e.g., Cambridge Isotope Labs, Sigma-Aldrich, Spectra Gases). Through the use of 13C and 15N isotopic labeling and multidimensional heteronuclear NMR experiments (Fig. 2.2), studies of 15-kDa RNAs are commonplace and recent methodological developments have been reviewed (10–14).

New experiments to measure RNA orientation dependent dipolar couplings (15–17) and cross-correlated relaxation rates (18, 19) have been developed, providing additional structural information. Furthermore, NMR experiments have been introduced that allow the direct identification of donor and acceptor nitrogen atoms involved in hydrogen bonds (20, 21). The unambiguous identification of hydrogen bonds is important in nucleic acid structure determination, particularly for tertiary structural interactions; in the absence of such direct measurements, hydrogen-bonding partners can be misassigned, which will subsequently impact the precision of the resulting structure. All these recently introduced parameters are especially important for structure determination of RNA due to the low proton density, and because a significant number of protons are potentially involved in exchange processes.

We have applied most of the reviewed methods to the 30-nucleotide human immunodeficiency virus (HIV)-2 transactivation response element (TAR) RNA, one of the best-characterized
medium-sized RNA molecules. The TAR RNA hairpin loop interacts with Tat, one of the regulatory proteins encoded by HIV. Tat contains an arginine-rich motif responsible for binding to its target (22, 23). Formation of the Tat–TAR interaction is critical for viral replication. Peptides from the basic region of Tat retain the specificity of RNA binding and the amide derivative of arginine also binds specifically to TAR, although with greatly reduced affinity (24, 25). The nucleotides on TAR important for Tat binding are clustered around a three-nucleotide bulge, shown in Fig. 2.3. Upon binding of Tat, Tat peptides or argininamide, the TAR RNA undergoes a major conformational change in the bulge region. In the bound form, the essential nucleotides, U38, A27 and U23, form a base triple, shown in Fig. 2.3, which results in an opening of the major groove for peptide recognition (26–29). Additional solution studies of the TAR RNA in the absence of ligands have been performed (30, 31).

2. Materials

2.1. In Vitro Transcription

1. Oligonucleotide Transcription Buffer (10×): 800 mM N-(2-hydroxyethyl)-piperazine-N’-2-ethanesulfonic acid potassium salt (K-HEPES), pH 8.1, 10 mM spermidine, and 0.1% (w/v) Triton X-100 prepared in water (see Note 1).

2. Plasmid Transcription Buffer (10×): 400 mM Tris-HCl, pH 8.1, 10 mM spermidine, 0.1% (w/v) Triton X-100 prepared in water.

Fig. 2.3. Sequence and secondary structure of the TAR RNA where the bold typeface highlights nucleotides important for Tat recognition. Upon binding of argininamide, the TAR RNA undergoes a conformational change in the bulge region where the essential nucleotides, U38, A27 and U23, form a base triple.
3. Solution of 50% (w/v) polyethylene glycol 8000 (PEG-8000) prepared in water.
4. 0.5 M ethylene diamine tetraacetic acid disodium salt (EDTA), pH 8.0, prepared in water (32).
5. TE Buffer: 10 mM Tris-HCl, 1 mM EDTA, pH 8.0, prepared in water.
6. DNA Transcription Promoter Oligonucleotide (60 µM) prepared in water (see Note 2).
7. DNA Transcription Template Oligonucleotide (60 µM) prepared in water (see Notes 3 and 4).
8. Linearized Double-Stranded Plasmid DNA Template (≥3 mg/mL) prepared in TE Buffer (see Note 5).
9. Solutions of 100 mM nucleotide-5′-triphosphates (ATP, UTP, GTP, and CTP) prepared in pH 7.0 water (see Note 6).
10. Solution of 1 M dithiothreitol (DTT) prepared in water.
11. Solution of 1 M magnesium chloride (MgCl₂) prepared in water.
12. Bacteriophage T7 RNA polymerase (see Note 7).
15. Solution of 3 M Sodium Acetate, pH 5.3, prepared in water.
16. 100% Ethanol.
17. 80% Formamide Stop/Loading Buffer (2×): 80% (v/v) formamide, 20% (v/v) 0.5 M (EDTA), pH 8.0, 0.02% (w/v) Bromophenol blue, and 0.02% (w/v) Xylene cyanol prepared in water.
18. 8M Urea prepared in water.

2.2. Polyacrylamide Gel Electrophoresis (PAGE)

1. Twenty Percent Acrylamide/Bisacrylamide Solution: 29:1 (w/w) acrylamide/bisacrylamide, 8 M urea, 90 mM Tris-borate (TBE), 2 mM EDTA, pH 8.1 (see Note 8).
2. TBE Running Buffer: 90 mM TBE, 2 mM EDTA, pH 8.1, prepared in water.
3. N,N,N′,N′-Tetramethyl-ethylenediamine (TEMED, Bio-Rad) (see Note 9).
4. Ammonium Persulfate Solution (APS): 30% (w/v) solution in water (see Note 10).
5. Elutrap Electroelution System (with BT1 and BT2 membranes, Schleicher & Schuell BioScience).
6. CentriPrep concentrator with appropriate molecular weight cut-off (Millipore).
7. NMR Buffer (e.g., 10 mM sodium phosphate, pH 6.5, 50 mM NaCl, 0.1 mM EDTA, 0.02% NaN₃, prepared in 90% H₂O/10% D₂O).

2.3. Anion-Exchange Chromatography

1. Low salt loading buffer, e.g., 20 mM potassium phosphate, pH 6.5, 0.5 mM EDTA, 0.02% sodium azide (NaN₃), and 100 mM KCl.
2. High salt elution buffer, e.g., 20 mM potassium phosphate, pH 6.5, 0.5 mM EDTA, 0.02% NaN₃, and 2 M KCl.
3. Two HiTrap Q columns (Amersham Pharmacia).
4. NAP25 column (Amersham Pharmacia).
5. CentriPrep concentrator with appropriate molecular weight cut-off (Millipore).
6. NMR Buffer (e.g. 10 mM sodium phosphate, pH 6.5, 50 mM NaCl, 0.1 mM EDTA, 0.02% NaN₃, prepared in 90% H₂O/10% D₂O).

3. Methods

3.1. RNA Sample Preparation and Purification

The yield of in vitro transcribed RNA can depend on a variety of factors, many of which are not fully understood. The rational sparse matrix method of duplicate 40–60 conditions in small-scale (10–50 µL) transcription reactions can be easily employed to find the optimal reaction conditions. Trace amounts of α-³²P-labeled nucleotide (typically 5.0×10⁵:1 [mol/mol] GTP:α-³²P-GTP (800 Ci/mmol), Perkin Elmer, Wellesley, MA) can be included to permit later radioanalytic quantitation of the transcription products. After four hours of incubation at 37°C the reactions are quenched with stop/loading buffer, and loaded directly to a 20% (29:1) denaturing polyacrylamide electrophoresis gel. The dried gel is phosphorimaged and the optimal conditions for transcription are chosen. The conditions can be chosen to either maximize the total yield of RNA, or in the case of isotopically labeled nucleotides, to maximize the yield of RNA per mole of input nucleotides. In addition, computational methods can assist in the interpretation of the experimental transcription optimization data (33). Typically, before embarking on a large-scale synthesis, a pilot 1 mL transcription reaction is carried out to verify the isolated yield. Transcription reactions are carried out on a scale of 1–40 mL, and typical isolated yields are 1–10 nmol RNA per mL of transcription.

Two strategies are available for preparing large quantities of RNA by in vitro run-off transcription (3, 4). Transcriptions for short RNAs (<50 nucleotides) are carried out from synthetic
DNA templates. The non-coding (top) strand and the template strand are purchased and gel purified on at least a 1-µmol scale for large-scale preparations. The preparation of RNA by standard in vitro run-off transcriptions from synthetic DNA templates using T7 polymerase becomes inefficient if the RNA transcript is longer than ~60 nucleotides. Thus, larger RNA transcripts are typically synthesized using linearized plasmid DNA containing the target RNA coding sequence under a T7 promoter (Fig. 2.4).

RNA structural studies in solution by NMR require milligram amounts of the desired RNA of specific length and sequence. Traditionally, the purification of RNA transcripts is achieved by preparative denaturing (8 M urea) PAGE and subsequent electroelution from the polyacrylamide gel matrix (34). This method separates large quantities of the desired RNA from unincorporated nucleotides and short, abortive transcripts with single nucleotide resolution, but tends to be laborious and time consuming. Additional disadvantages are the co-purification of water-soluble acrylamide impurities that are a result of incomplete polymerization along with the RNA transcript. These impurities show a high affinity for RNA, and their complete removal by dialysis is difficult, necessitating either additional purification steps or extensive rinsing of the RNA transcript with water using an appropriate CentriPrep concentrator.

An alternative purification protocol employs anion-exchange chromatography (35, 36). Using this fast chromatography purification approach, the most time-consuming step for preparing large quantities of RNA for structural studies – PAGE purification followed by electroelution – can be eliminated and sample contamination with acrylamide is circumvented. It should be noted that this technique also preserves the co-transcriptionally adopted folding state of the desired RNA. This is in marked contrast to denaturing PAGE purification, which is typically accompanied by several precipitation steps, and represents an important advantage in cases in which annealing procedures fail to reproduce a natively folded RNA target.

![Fig. 2.4. Single and double-stranded DNA template sequences for the in vitro transcription of the HIV-2 TAR RNA (see Note 2).](image)

Transcription Start Site

<table>
<thead>
<tr>
<th>ssDNA Template Directed</th>
<th>Plasmid Directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3’ GATTAGCTGCGTGCAGTAACGCTCTAAGCTCGGACCAGGAGACCGG 5’</td>
<td>3’ GATTAGCTGCGTGCAGTAACGCTCTAAGCTCGGACCAGGAGACCGG 5’</td>
</tr>
<tr>
<td>5’ CTAATACGACTCACTATAAG 3’</td>
<td>5’ CTAATACGACTCACTATAAG 3’</td>
</tr>
</tbody>
</table>

T7 promoter sequence

5’ GCCCAGAUUGAGCCCGGAGCUCUCUGGCC 3’
1. Transcription reactions are carried out under the following conditions: 80 mM K-HEPES (pH 8.1), 1 mM spermidine, 10 mM DTT, 0.01% Triton X-100, 80 mg/mL PEG-8000, 8–48 mM MgCl$_2$, 2–6 mM each NTP, 0.3 µM template oligonucleotide DNA, 0.3 µM promoter oligonucleotide DNA, and ~2,000–4,000 units/mL T7 RNA polymerase (see Notes 11, 12, and 13).

2. The reactions are incubated for 4 hours in a water bath at 37°C.

3. The reactions are quenched with the addition of 0.1 volume of 0.5 M EDTA (pH 8.0) (see Note 14).

4. The reactions are extracted with an equal volume of phenol/chloroform (1:1, v/v) equilibrated with TE buffer to remove T7 RNA polymerase prior to purification. The organic layer is further extracted with an equal volume of water to ensure all the RNA is removed from the reaction.

5. The aqueous layers are combined and back extracted with an equal volume of chloroform/i-amyl alcohol (29:1, v/v) to remove any traces of phenol.

6. The aqueous layer is ethanol precipitated with the addition of 0.1 vol of 3 M sodium acetate and 3.5 volumes cold 100% ethanol at −20°C.

7. The crude RNA precipitate is collected by centrifugation, and resuspended in equal volumes of 80% Formamide Stop/Loading Buffer and 8M urea.

8. The sample is suitable for loading to a denaturing polyacrylamide gel.
5. Complete the assembly of the gel unit by connecting the power supply. The gel should be pre-run for at least 30 minutes at the appropriate voltage to allow thermal equilibration of the gel plates, prior to loading your samples.

6. Run the RNA sample a sufficient time to resolve the \(n-1 \) nucleotide transcription product, typically two-thirds of the gel if the correct percentage polyacrylamide gel was used.

7. Take the gel off the apparatus and carefully remove the gel from the plates, placing the gel on clear cellophane.

8. The RNA can be easily visualized by \(\text{UV}_{254} \) shadowing, and excised from the gel with a clean razor blade or scalpel.

9. Place the gel pieces into an Elutrap Electroelution System in TBE running buffer at 4°C, and the RNA is extracted from the gel in a manner outlined by the vendor. Typically, removing four fractions over a period of 6 hours at 200V is sufficient to extract RNA from even a twenty percent polyacrylamide gel.

10. The RNA containing fractions are combined and precipitated by adding one-tenth the volume of 3M sodium acetate, followed by 3.5 volumes of cold 100% ethanol. Place the solution at \(-20\)°C.

11. The desired RNA is collected by centrifugation.

12. RNA samples are desalted using an appropriate CentriPrep concentrator and lyophilized.

13. The lyophilized RNA is dissolved in desired final volume (e.g., 500\(\mu \)L for a standard 5-mm NMR sample tube) of NMR buffer.

14. The NMR sample is annealed in a manner appropriate to the specific RNA to form native structure (see Note 15).

1. The transcription reaction is clarified by centrifugation (14,000\(g \)) to remove traces of precipitated pyrophosphate (see Note 16).

2. Equilibrate two HiTrap Q columns (Amersham Pharmacia) in low salt loading buffer at room temperature.

3. The transcription reaction mixture is applied to the equilibrated columns.

4. To separate the desired RNA from unincorporated nucleotides and plasmid DNA template, the loaded sample is typically eluted at a low flow rate of 1 mL/minute, in 3-mL fractions, with an increasing KCl gradient created by simultaneously decreasing the percentage of low salt loading buffer and increasing the percentage of high salt elution buffer being passed through the columns.
5. A common gradient for anion-exchange purification after transcription starts with 100% loading buffer to wash the columns, continues through a gradual climb from 0% to 60% elution buffer for the first 2 hours, then to 100% elution buffer over another 5 minutes. A typical elution profile, detected at 260 nm, generally shows three major peaks: the first one containing unincorporated nucleotides and short, abortive transcripts; the second peak containing the desired RNA; and the last fractions containing the plasmid DNA template (see Note 17).

6. Pure fractions are combined and concentrated using an appropriate CentriPrep (Millipore) concentrator.

7. Concentrated fractions are desalted and buffer exchanged by passage through a NAP25 gel filtration column (Amersham Pharmacia) equilibrated with an NMR buffer. Alternatively, pure fractions can also be dialyzed into NMR buffer, and then concentrated with a CentriPrep concentrator.

8. NMR samples are concentrated to desired final volumes (e.g., 500 µL for a standard 5-mm NMR sample tube) using an appropriate CentriPrep concentrator.

Assignment of RNA resonances is commonly achieved through identification of sequential base to ribose nuclear Overhauser effect (NOE) patterns seen in helical regions of nucleic acid structure (Fig. 2.5), in analogy to the procedure originally utilized for DNA studies in the 1980s (37). With the advent of isotopic labeling for RNA, the basic NOE assignment approach was initially expanded to include multi-dimensional (3D and 4D) versions of the standard nuclear Overhauser effect spectroscopy (NOESY), which simplified assignment and identification of NOEs (38, 39).

![Fig. 2.5](image_url)

Fig. 2.5. Schematic representation of a 5′-pApC-3′ dinucleotide with arrows indicating the intra- and interresidual distances used for NOE based sequential assignments of A-form helical conformations. A schematic 2D NOESY with cross-peaks correlating H1′(i)–H8(i), H1′(i)–H6(i+1), and H1′(i+1)–H6(i+1) is shown.
The NOE-based approach, however, relies on assumptions about structure and assignments, and is susceptible to errors from structural bias; methodology that achieves sequential assignment via unambiguous through-bond correlation experiments, as is the case for proteins, would be more ideal. Unfortunately, complete sequential assignments of even medium-sized RNA molecules using through-bond experiments such as HCP (see Note 18), HCP-TOCSY (Total Correlation Spectroscopy) and HP-HET-COR (Heteronuclear Correlation) are hampered by notoriously overlapped resonances and modest sensitivity. Thus, through-bond assignment using HCP-like experiments is not feasible for larger RNA target molecules (~20 kDa). A hybrid approach with HCN and NOESY experiments is the optimal compromise to achieve unambiguous assignments. The HCN experiments can determine intranucleotide correlations within and between the base and ribose resonances, which will significantly reduce the ambiguity present in the NOESY-based assignment procedure. HCCH-based experiments are used to unambiguously assign crowded ribose, pyrimidine H5/H6, and adenosine spin systems. A variety of through-bond correlation experiments facilitate the assignments of exchangeable imino- and amino proton resonances linked to non-exchangeable base H6 and H8 protons (12, 40).

After sequence-specific assignments of RNAs are obtained, the structure determination is based on collecting sufficient numbers of proton-proton distance restraints utilizing NOESY experiments. The structural analysis of the RNA backbone conformation is complicated by the lack of useful 1H-1H NOE distance restraints available that define the backbone torsions (Fig. 2.6).

Fig. 2.6. Schematic representation of a 5'-pGp-3' mononucleotide with arrows indicating the various torsional degrees of freedom in the sugar-phosphate backbone, the pentose ring, and the glycosidic torsion.
Potentially, the short distance restraints between pairs of protons (<6Å) can be complemented with torsion angle information accessible through J-coupling constants. Vicinal 3J scalar coupling constants can provide useful structural information about the sugar pucker, the β and ϵ backbone torsion angle conformations, as well as the glycosidic torsion χ, which defines the orientation of nucleobases with respect to the sugar moiety. In addition, NMR experiments have been introduced that allow the direct identification of donor and acceptor nitrogen atoms involved in hydrogen bonds. These recently introduced parameters are especially important for structure determination of RNA due to the low proton density.

However, there is a practical difficulty in defining RNA structures precisely by NMR because NOE and J-coupling–based structure calculation relies on either short range distance (<6Å) or local torsion angle information. RNAs often are elongated structures, which are better approximated as cylindrical rather than globular shapes. There is a lack of NOE information between distant ends of the molecule; as a result, the relative orientations of helical segments at opposite ends of the molecule are poorly defined. Recent advances in methodology help to alleviate or overcome this shortcoming \(15, 41\).

New experiments to measure orientational, rather than distance-dependent, dipolar couplings and cross-correlated relaxation rates have been developed, providing additional structural information. Methods have been developed to create a slightly anisotropic environment for molecules tumbling in solution. This results in a small degree of alignment of the molecule, and the dipolar couplings no longer average to zero, while retaining the quality of high-resolution NMR spectra. The most promising system for NMR studies of partially aligned RNA is a Pf1 bacteriophage solution \(16, 42\). There is a narrow useful range of alignments suitable for high-resolution NMR studies. Higher phage concentrations are associated with stronger alignments and produce larger residual dipolar couplings, whereas lower concentrations correspond to lower degrees of ordering, reflected in smaller dipolar couplings. Too much alignment gives larger dipolar couplings, but also results in line broadening to such an extent that high-resolution NMR is not possible.

Residual dipolar couplings (RDC) data should be combined with the traditionally used NOE distance restraints and torsion angles derived from scalar J-couplings. The RDC data do not only provide additional information for a better definition of the global orientation of the three stems with respect to each other, but also carry valuable information on the dynamic properties of the RNA studied \(43–45\).
1. The main source of structural data will still be obtained from NOEs, which provide distance restraints for pairs of hydrogen atoms. Only short proton-proton distances in the range <6 Å are accessible through NOESY-type experiments. Identification of NOEs will be facilitated by resolving the 1H-1H NOE connectivities that are essential for determining the structure into three and four dimensions through detection of the heteronuclear (13C/15N) chemical shifts of the proton-attached nuclei.

2. NOESY-type experiments should be recorded with varying mixing times (50–300 ms). NOE cross peaks obtained with long mixing times (>100 ms) are harder to quantitate and should be used with caution in structure calculations; however, they can tremendously help during the assignment process (see Notes 19, 20, 21, and 22).

3. Imino proton resonances should be assigned sequence specifically at an early stage from water flip-back, WATERGATE-2D NOESY (46) spectra ($\tau_{\text{mix}} = 200$ ms) to verify the construct integrity and secondary structure predictions (Fig. 2.7).

4. The identification of NOEs can be further facilitated by utilizing isotope filtered/edited NOESY experiments in combination with nucleotide-specific isotopically labeled RNA (47).

1. The ribose sugar geometry is defined by five alternating torsion angles (ν_0 through ν_4). Usually, the ribose sugar adopts one of the energetically preferred C2'-endo (South) or C3'-endo (North) conformations. A number of 1H-1H and 1H-13C scalar couplings are available to determine the sugar pucker.

Fig. 2.7. 2D 1H-1H water flip-back, WATERGATE NOESY (46) spectrum of the TAR RNA ($\tau_{\text{mix}} = 200$ ms). Sequential assignments of the imino proton resonances by NOE connectivities are indicated. The observable upper stem G and U residues are shown in bold gray and lower stem G and U residues in bold black.
qualitatively with the combination of \(\text{H1}'-\text{H2}' \) and \(\text{H3}'-\text{H4}' \) coupling constants being the most useful for smaller RNAs. The \(\text{j}(\text{H1}',\text{H2}') \) vicinal coupling is >8 Hz for C2'-endo puckers and ~1 Hz for C3'-endo puckers (Fig. 2.8), typically found in A-form helices (48–50). The opposite behavior is expected for the \(\text{j}(\text{H3}',\text{H4}') \) coupling constant with C2'-endo puckers associated with small and C3'-endo puckers with relatively large coupling constant values (see Note 23).

2. Measurement of the \(\gamma \) torsion is difficult due to the need for stereospecific assignments of the H5' and H5' proton resonances. The two-bond C4',H5'/H5'' couplings can be used in conjunction with the vicinal H4',H5'/H5'' couplings to define \(\gamma \) (50, 51).

3. Two heteronuclear vicinal \(^1\text{H},^{13}\text{C} \) couplings contain useful information about the glycosidic torsion angle \(\chi \). The \(\text{j}(\text{H1}',\text{C}) \) couplings involving the C4,C8 carbons in purines and the C2,C6 carbons in pyrimidines, respectively, all depend on the \(\chi \) torsion (50, 52). The preferred orientation around \(\chi \) in A-form helix is \textit{anti}, which makes the base accessible for commonly found hydrogen bonding interaction.

4. The \(\epsilon \) and \(\beta \) torsions can be determined by measuring a variety of \(^{13}\text{C},^{31}\text{P} \) and \(^1\text{H},^{31}\text{P} \) scalar couplings. Some of these torsions may be measured directly in 2D \(^1\text{H},^{31}\text{P} \) heteronuclear COSY (or HETCOR) experiments (53, 54) and non-refocused \(^1\text{H},^{31}\text{P} \)

Fig. 2.8. Ribose H1'-H2' region of a 2D \(^1\text{H} \),\(^1\text{H} \) DQF (Double Quantum Filtered): COSY (129) spectrum of the TAR RNA. Assignments for the H1'-H2' cross-peaks probing the individual sugar puckers are indicated. Residues shown in bold adopt either C2'-endo or mixed C2'-endo/C3'-endo sugar puckers, resulting in more efficient magnetization transfer due to larger \(\text{j}(\text{H1}',\text{H2}') \) couplings. Weaker cross-peaks are associated with residues adopting C3'-endo sugar puckers, typically found in A-form helices. The inset shows a ribose ring; the arrow highlights the H1'-H2' connection.
HSQCs (Heteronuclear Single Quantum Coherences) if the phosphorus and proton resonances are sufficiently resolved (Fig. 2.9). However, both the ribose proton and phosphorus resonances involved are generally overlapped for even moderate size RNAs. Accurate measurements for 13C, 31P and 1H, 31P couplings can be obtained from both phosphorus-fitting of doublets from singlets (so-called P-FIDS) \(^{55}\) or spin echo difference experiments \(^{56–60}\). J-HMBC techniques can be applied to determine 3J(H,P) couplings \(^{61}\). A quantitative version of the HCP experiment allows for quantitation of 3J(C4',P) \(^{62}\).

5. The α and ζ torsions are not accessible by J-coupling measurements because the involved 16O nuclei have no magnetic moment. Some groups have used 31P chemical shifts as a guide for loose constraints on these torsions \(^{63}\); however, the correlation between 31P chemical shifts and the phosphodiester backbone conformation is not well understood in RNA.

6. Cross-correlated relaxation rates have been introduced to high-resolution NMR as a novel parameter for structure determination \(^{18, 19}\). Such methods have been employed to gain information on the α and ζ torsions. The cross-correlated relaxation between a ribose 13C-1H dipole and the 31P chemical shift anisotropy (CSA) carries valuable structural information about the phosphodiester conformation \(^{64}\). Additionally, applications have been published where the cross-correlated relaxation between a 13C-1H dipole

Fig. 2.9. Schematic representation of a 5'-NpN-3' dinucleotide with arrows highlighting the 3J(H3',P) and 3J(H5'/5'',P) couplings associated with the torsion angles ϵ and β, respectively. 2D 1H,31P-HETCOR spectrum of the TAR RNA \(^{53}\). Assignments for the H3'/H5'/H5'',31P-correlations along the 31P36 resonance are indicated in the spectrum and shown in bold in the secondary structure representation.
and the glycosidic 15N CSA is utilized to collect information about the glycosidic torsion angle χ (65, 66). Another example is the measurement of cross-correlated relaxation rates between neighboring 13C-1H dipoles within the ribose ring that can be used to define the sugar pucker. For RNAs, cross-correlated relaxation rates can be measured using an experiment that belongs to the HCCH class, and precisely determine the ribose sugar pucker without the need of any empirical Karplus parameterization (67). The resolution of this experiment can be further enhanced by a combination with a CC-TOCSY transfer (68) (see Note 24).

1. One-bond dipolar couplings on the order of ±10–30 Hz can be introduced using ~15 mg/mL filamentous Pf1-phages as co-solutes, which creates an anisotropic environment for the RNA target molecule (see Note 25).

2. For a directly bonded pair of nuclei with known distance, such as 1H-13C or 1H-15N in labeled RNA, angular restraints can be extracted from dipolar coupling data and incorporated during the structure calculation. Such one-bond dipolar couplings can be measured in a straightforward and sensitive manner. The difference between scalar J coupling constant values measured in isotropic and anisotropic media gives the residual dipolar coupling. Two NMR experiments are commonly performed to measure one bond 1D(H,C) RDC constants. Base C2-H2, C5-H5, C6-H6, and C8-H8 dipolar couplings are typically derived from analyzing peak positions in CT-TROSY and CT-antiTROSY experiments (69). For the ribose 1′–4′ one-bond dipolar couplings, a J-modulated CT-HSQC should be acquired (70). A J-modulated 1H,15N-HSQC provides additional one bond 1D(H,N) RDC restraints (71).

3. The determination of the phosphate backbone conformation in solution remains an experimentally intriguing problem. New parameters based on incomplete averaging in partially aligned RNA samples such as dipolar 1H,31P couplings (53, 72, 73) or 31P CSA (74) hold the promise to significantly impact on the precision of RNA structure determination in solution.

1. Canonical base-pair hydrogen bonding of the Watson-Crick type is fundamental in all biological processes in which nucleic acids are involved. The partially covalent character of hydrogen bonds gives rise to measurable scalar spin-spin couplings of, for example, the type $^{h3}J(N,N)$ and $^{h1}J(H,N)$ that represent important additional NMR parameters for the structure determination of nucleic acids in solution (20, 21). In addition to the unambiguous determination of donor D

3.2.5. Residual Dipolar Coupling Restraints

1. One-bond dipolar couplings on the order of ±10–30 Hz can be introduced using ~15 mg/mL filamentous Pf1-phages as co-solutes, which creates an anisotropic environment for the RNA target molecule (see Note 25).

2. For a directly bonded pair of nuclei with known distance, such as 1H-13C or 1H-15N in labeled RNA, angular restraints can be extracted from dipolar coupling data and incorporated during the structure calculation. Such one-bond dipolar couplings can be measured in a straightforward and sensitive manner. The difference between scalar J coupling constant values measured in isotropic and anisotropic media gives the residual dipolar coupling. Two NMR experiments are commonly performed to measure one bond 1D(H,C) RDC constants. Base C2-H2, C5-H5, C6-H6, and C8-H8 dipolar couplings are typically derived from analyzing peak positions in CT-TROSY and CT-antiTROSY experiments (69). For the ribose 1′–4′ one-bond dipolar couplings, a J-modulated CT-HSQC should be acquired (70). A J-modulated 1H,15N-HSQC provides additional one bond 1D(H,N) RDC restraints (71).

3. The determination of the phosphate backbone conformation in solution remains an experimentally intriguing problem. New parameters based on incomplete averaging in partially aligned RNA samples such as dipolar 1H,31P couplings (53, 72, 73) or 31P CSA (74) hold the promise to significantly impact on the precision of RNA structure determination in solution.

3.2.6. Hydrogen Bond Restraints

1. Canonical base-pair hydrogen bonding of the Watson-Crick type is fundamental in all biological processes in which nucleic acids are involved. The partially covalent character of hydrogen bonds gives rise to measurable scalar spin-spin couplings of, for example, the type $^{h3}J(N,N)$ and $^{h1}J(H,N)$ that represent important additional NMR parameters for the structure determination of nucleic acids in solution (20, 21). In addition to the unambiguous determination of donor D
and acceptor A nuclei involved in hydrogen bond formation, the magnitude of the $^1J(D,A)$ couplings reports on the hydrogen bond geometry and could potentially provide more precise distance information for structure calculations. The simultaneous identification of nuclei involved in hydrogen bonds and quantification of corresponding $^2J(N,N)$ scalar couplings is accomplished using a HNN-COSY (Correlation Spectroscopy) experiment or one of its variants (Fig. 2.10).

2. Several groups have also reported measuring scalar couplings across hydrogen bonds in non-canonical base pairs and in tertiary structural interactions (75–81).

3. The large two-bond $^2J(H,N)$ scalar couplings within the purine bases allow reasonably efficient magnetization transfer during INEPT (Insensitive Nuclei Enhancement by Polarization Transfer) delays (82). The independent assignments of potential nitrogen hydrogen bond acceptor sites using the intra-residue $^2J(H2,N1)$, $^2J(H2,N3)$, and $^2J(H8,N7)$ correlations for the purine residues in the RNA molecule can be obtained from a two-bond $^2J(H,N)$ $^1H,^{15}N$-HSQC experiment.

4. The 2′-hydroxyl group plays fundamental roles in both the structure and function of RNA and is the major determinant of the conformational and thermodynamic differences

![Fig. 2.10. 2D $^1H,^{15}N$ HNN-COSY of the TAR RNA. Assignments of the imino proton nitrogen correlations are indicated with the observable G and U residues shown in black and gray, respectively. Canonical base-pair hydrogen bonding of the Watson-Crick type correlates U N3 nitrogen donor sites with A N1 nitrogen acceptor sites (dashed line) and G N1 nitrogen donor sites with C N3 nitrogen acceptor sites (solid line). Typical ^{15}N chemical shift ranges are indicated; solid black bars highlight G N1 and C N3 nitrogens, while gray bars highlight A N1 and U N3 nitrogen chemical shift ranges.]
between RNA and DNA. In aqueous solution the rapid exchange of the hydroxyl proton with the solvent typically prevents its observation in RNA at room temperature by NMR. Most recently, a conformational analysis of 2′-OH hydroxyl groups of the HIV-2 TAR RNA by means of NMR scalar coupling measurements in solution at low temperature has been reported (83, 84). Cross hydrogen bond scalar couplings involving two slowly exchanging 2′-OH hydroxyl protons were observed and analyzed in a frame shifting mRNA pseudoknot (85).

1. A set of HNCCH- and HCCNH-TOCSY experiments have been developed that correlate the exchangeable imino and amino proton resonances with the non-exchangeable base resonances for the complicated spin systems of all four nucleotides as shown in Fig. 2.11 (81, 86–91).

2. Complementary HCCH-COSY (92) and HCCH-TOCSY (93, 94) experiments are used to unambiguously assign pyrimidine H5/H6 and adenosine spin systems.

1. Optimized HCN-type pulse schemes for the through-bond correlation of ribose and base resonances utilizing MQ (multi-quantum)- instead of SQ (single-quantum)-evolution periods have been proposed and show significant sensitivity gains, essential for successful investigations of larger RNA systems (95, 96). Also, TROSY (Transverse Relaxation-Optimized Spectroscopy) versions of HCN experiments have been successfully applied to RNA (97, 98).

Fig. 2.11. The four different aromatic nucleobases, uracil, cytosine, guanine, and adenine. Exchangeable imino and amino proton resonances and non-exchangeable aromatic proton resonances that are correlated in HNCCH- and HCCNH-TOCSY experiments are shown as gray circles.
2. In favorable cases, magnetization can be transferred all the way through from the anomeric H1′ proton to the base H6/8 protons circumventing assignments through joint glycosidic N1/9 nitrogen chemical shift (99, 100).

1. The magnetization transfer through the ribose proton spin systems is hampered due to the small $^3J(H1′,H2′)$ vicinal coupling, present in most commonly populated A-form RNA, correlating the H1′ and H2′ resonances. Ribose proton spin system assignments from homonuclear 1H - COSY- and TOCSY experiments can be obtained more readily using HCCH-COSY and -TOCSY experiments on ribose rings uniformly labeled with ^{13}C, which allows magnetization transfer and chemical shift evolution on the C1′ to C5′ carbons (39, 101–104).

2. The powerful hybrid HCCH-COSY-TOCSY (105, 106) experiment can also be employed to unambiguously assign crowded ribose spin systems.

1. For unlabeled RNAs, a number of relatively efficient $^1H, ^{31}P$-multi-dimensional correlation schemes are available for sequential assignment of ^{31}P and ribose 1H resonances. Magnetization can be transferred from excited ^{31}P resonances to the $^3J(H,P)$ scalar coupled ribose protons for detection using either COSY- (54) or heteronuclear TOCSY-type (107) transfer steps. The resulting two-dimensional H3′/H5′/H5′′,31P-correlations can be concatenated with homonuclear $^1H, ^1H$ NOESY or TOCSY experiments to transfer magnetization to potentially better resolved resonances like H1′ or aromatic H8/H6 resonances (108, 109).

2. A straightforward extend approach for ^{13}C labeled RNAs is HCP correlation via sequential INEPT transfers ($^1H \rightarrow ^{13}C \rightarrow ^{31}P \rightarrow ^{13}C \rightarrow ^1H$) (110, 111) correlating nuclei of adjacent nucleotides i and i + 1 (Fig. 2.12). Subsequent experiments, HCP-CCH-TOCSY (112) and P(CC)H-TOCSY (113) combine the HCP and HCCH-TOCSY experiments and thus resolve relevant correlations on the better dispersed C1′/H1′ resonances.

1. The intensity of NOESY cross peaks is approximately proportional to the inverse of the averaged distance to the power of six, $<1/r_{ij}^6>$, assuming an isolated pair of proton spins i and j. For RNA NMR studies, NOE-derived distance restraints are often determined semi-quantitatively and placed into four categories: strong, medium, weak, and very weak NOEs. A conservative approach sets all the lower bounds to 1.8 Å.
(van der Waals radius) with upper bounds ranging from 3.0 Å for the most intense NOEs to 7.0 Å for the weakest NOEs found in H2O experiments.

CNS/Xplor syntax as compiled in distance restraint table (e.g., noe.tbl):

assign <1st atom-sel.> <2nd atom-sel.> <distance> <dminus> <dplus>

Example: proton H1 of residue 4 and proton H4′ of residue 30 are separated by 2.4 ± 0.6 Å

assign (resid 4 and name H1) (resid 30 and name H4′) 2.4 0.6 0.6

2. J-coupling restraints can be implemented in two different ways during the structure determination. They can be introduced qualitatively by restricting a torsion angle in a loose manner (±30°) to one of the three staggered rotamers along the phosphodiester backbone, or defining the preferred ribose sugar pucker such as C2′-endo or C3′-endo. Alternatively, vicinal J-couplings can be quantitatively related to a certain torsion angle using semi-empirical Karplus relations of the form: \(J = A \cos^2 \theta + B \cos \theta + C \), where \(\theta \) is the intervening torsion angle (40, 114).

CNS/Xplor syntax as compiled in torsion angle restraint table (e.g., torsion.tbl):

assign <1st atom-sel.> <2nd atom-sel.> <3rd atom-sel.> <4th atom-sel.> <real> <real> <integer>
The four numbers are, respectively:
1. Force constant in kcal/(mole radians exp\{exponent\})
2. Equilibrium torsion angle in degrees
3. Range around the equilibrium value in degrees
4. Exponent for restraint calculation

Example: restrict residue 2 to North or C3’-endo sugar pucker

The sugar pucker can be defined with the following ribose torsion angles: \(\nu_1 = O4' - C1' - C2' - C3'\) and \(\nu_2 = C1' - C2' - C3' - C4'\).

assign (resid 2 and name O4') (resid 2 and name C1')
(resid 2 and name C2') (resid 2 and name C3')
1.0–20.0 10.0 2

assign (resid 2 and name C1') (resid 2 and name C2')
(resid 2 and name C3') (resid 2 and name C4')
1.0 35.0 5.0 2

3. The size of dipolar couplings for an axially symmetric RNA molecule depends on the average value of an orientational function, \(\frac{1}{2}(3\cos^2 \theta - 1)\), and the inverse cubic distance, \(1/r^3\), between the coupled nuclei. Here, the angle \(\theta\) characterizes the axial orientation of the internuclear vector that connects the coupled nuclei with respect to the principal axis system of the molecular alignment tensor.

CNS/Xplor syntax as compiled in RDC table (e.g., dipolar.tbl):

A pseudomolecule OXYZ is defined with orthogonal vectors OX, OY, and OZ. OXYZ reorients itself during the refinement process to satisfy the experimentally measured RDC data against an energy penalty with its origin fixed in space away from the target RNA molecule.

assign <external origin-sel.>
<x-unit vector-sel.>
<y-unit vector-sel.>
<z-unit vector-sel.>
<1st atom-sel.> <2nd atom-sel.> <RDC> <RDC_error>

Example: An RDC value of 15.6 ± 0.6 Hz is measured for the one-bond interaction between C1’ and H1’ of residue 2:

assign (resid 500 and name O0) (resid 500 and name Z)
(resid 500 and name X) (resid 500 and name Y)
(resid 2 and name C1’)
(resid 2 and name H1’) 15.6000 0.6000
1. Most commonly, starting structures are calculated from randomized RNA coordinates using solely energy terms from holonomic constraints such as geometric and non-bonded terms using restrained molecular dynamics calculations.

2. To generate a family of structures consistent with the NMR data, the second step refines against the experimentally derived NOE distance and torsion restraints. We typically follow widely used approaches using restrained molecular dynamics in torsion angle space. Families of structures are generated from random extended structures in Xplor (115) or CNS (116) using ab initio simulated annealing. Torsion angle dynamics (TAD) as implemented into, e.g., Xplor or CNS proved to be robust and have a higher convergence rate with respect to molecular dynamics in Cartesian coordinate space (117).

3. The generated structures are further refined against RDC data in a series of molecular dynamic runs with increasing dipolar force constants. Xplor and CNS provide modules for refinements against novel NMR parameters, for example, chemical shifts and anisotropic interactions such as RDCs and phosphorus chemical shift anisotropies.

4. The lowest energy structures after simulated annealing and subsequent refinement against sets of RDCs collected are minimized using the AMBER module Sander (118). Due to more adapted force fields, AMBER yields better and more consistent results for nucleic acids (119).

3.3.3. Structural Statistics

1. In evaluating the quality of a family of RNA NMR structures, a number of statistics can be evaluated: Root Mean Square Deviation (RMSD), number of NOE, RDC, and torsion restraints; residual distance, dipolar coupling, and torsion violations; and the largest distance, dipolar coupling, and torsion violations. Typically, the distance restraints are further dissected into the number of inter-residue, intra-residue, and inter-molecular NOEs.

2. Useful RMSDs to consider include only regions of interest and are usually a more accurate descriptor of the quality of the structure than the overall global RMSD. Local RMSDs are given because the overall global RMSD can easily be in the 2.0–3.0 Å range, which might otherwise be indicative of poor convergence. Almost every RNA structure studied includes a region that is poorly defined, such as a disordered loop, terminal base pair, or a nucleotide without any inter-nucleotide NOEs. This situation is comparable to protein NMR studies, which often neglect the N and C terminal ends of proteins because of the lack of structural data from these regions (see Note 26).
3. In contrast to crystallographic B-factors, a general measure for the uncertainty in NMR-derived structures is not available. The commonly used RMSD, which is a measure for the precision of the data, tends to overestimate the accuracy of NMR structure ensembles and therefore is a problematic measure for the uncertainty in the atomic coordinates. However, the measurement of a large set of RDCs permits cross-validation to assess the accuracy of NMR-derived atomic coordinates. Structure calculations should be carried out omitting a randomly chosen subset of the RDC data while refining against the remaining RDCs. The accuracy of a family of RNA NMR structures is cross-validated by the agreement between the structures (which are used to back-calculate the RDCs) and the omitted RDC subset \((120, 121) \). Alternatively, a comparison between calculated and observed \(^1\)H chemical shifts represents another possibility for cross-validation of structures derived from NMR restraints \((122) \).

4. Notes

1. Unless stated otherwise, all solutions should be prepared in water that has a resistivity of 18.2 M\(\Omega\)•cm and total organic content of less than five parts per billion. This standard is referred to as “water” in the text.

2. The T7 promoter DNA strand used for oligonucleotide-based \textit{in vitro} transcription should be of the following sequence: 5′-C TAA TAC GAC TCA CTA TAG-3′. The addition of a cytidine nucleotide 5′ of the T7 promoter sequence increases stability of the dsDNA and increases yields of product RNA \((123) \).

3. When designing the template strand of ssDNA, care should be taken at both the 5′, as well as 3′ end to insure optimal yields of RNA \((3, 4) \). If the RNA product contains unacceptable 3′-end inhomogeneity, the template ssDNA can be prepared with a 5′ non-hydrogen bonding nucleoside such as 4-methylindole \((124) \). Alternatively, the desired RNA can be transcribed with a 3′-end flanking sequence that folds into a hammerhead ribozyme that cleaves co-transcriptionally to yield a homogenous 3′-end with a 2′-, 3′-cyclic phosphate group \((125, 126) \).

4. 5′-YpA-3′ steps in single-stranded regions constitute hot spots for RNA hydrolysis and thus can contribute to long-term chemical instability of an NMR sample. In favorable cases, these dinucleotide steps can be eliminated without compromising the RNA structure.
5. In addition to Notes 2, 3, and 4, care should also be taken when designing a restriction enzyme site at the 3′-end of the plasmid for linearization. The remaining nucleotides should not only reduce 3′-end inhomogeneity, but also should be compatible with secondary or tertiary interactions that may be present in the RNA.

6. It is recommended that nucleotide-5′-triphosphates should be prepared (127) or purchased (Sigma-Aldrich, St. Louis, MO; Cambridge Isotope Labs, Andover, MA) as the free acid, ammonium, or sodium salt whenever possible. In our hands, lower transcription yields can result when lithium, magnesium, triethylammonium, and cyclohexylammonium salts are used.

7. T7 RNA polymerase is commercially available (e.g., New England Biolabs, Beverly, MA) but expensive. We prepare T7 RNA polymerase for transcriptions from an E. coli overexpressing strain, several million Units at a time, approximately every 6 months.

8. Unpolymerized acrylamide/bisacrylamide is a neurotoxin; therefore, care should be taken to avoid direct exposure.

9. N,N,N,N-Tetramethyl-ethylenediamine (TEMED, Bio-Rad) is best stored at room temperature in a desiccator. Quality of gels and rate of polymerization decline after opening; therefore, purchasing small amounts of TEMED is recommended.

10. Ammonium persulfate (APS) is best stored at 4°C. Quality of gels and rate of polymerization decline over time; therefore, it is recommended that stocks should be prepared frequently.

11. If plasmid DNA is used, one should substitute for plasmid Transcription buffer and omit the PEG-8000.

12. During the transcription reaction, there is a buildup of pyrophosphate that may slow down and in extreme cases inhibit the polymerase reaction by sequestering Mg^{2+}. Transcription yields may be improved with the addition of 1 unit of inorganic pyrophosphatase (IPP, Sigma-Aldrich) per milliliter of transcription. IPP hydrolyzes (insoluble) pyrophosphates. Care should be taken to optimize the transcription in the presence of IPP.

13. Transcription yields may also be improved with the addition of 10 units of RNAase Inhibitor (RNAsin, Promega Corp.) per milliliter of transcription. Care should be taken to optimize the transcription in the presence of inhibitor.

14. When transcription optimizations are being performed, one can directly bring each reaction up in loading buffer and apply directly to the polyacrylamide gel.
15. No general procedures for annealing can be given as conditions can vary between RNAs. Typically, simple stem-loop structures such as the 30 nucleotide-containing TAR RNA can be properly annealed by heat denaturation (95°C for 2 minutes) followed by a snap-cooling step (4°C for 10 minutes) under low to moderate salt conditions.

16. Transcription reactions can be extracted with an equal volume of phenol/chloroform (Fisher Scientific) equilibrated with TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0) to remove enzymes prior to anion-exchange chromatography.

17. Anion-exchange FPLC gradient conditions should be optimized to increase the resolution for each desired RNA target.

18. Names given to the through bond correlation experiments are derived from the series of nuclei through which magnetization is transferred during the experiment.

19. Before embarking on a detailed and time-consuming NMR investigation of a chosen RNA, it is extremely important to optimize the sample conditions for acquisition of the various required NMR experiments. It is critical to determine at the outset if the system is suitable for a high-resolution NMR structure elucidation. Considerations include: the RNA construct, salt concentrations, pH, and buffer type and concentration.

20. The imino proton region of the proton NMR spectrum of an unlabeled RNA sample in H₂O provides a sensitive diagnostic for this purpose. An example imino proton 1D spectrum for a correctly folded 30mer RNA is shown in Fig. 2.13. One peak should be observed for each Watson-Crick base pair in the molecule. Since the imino protons exchange

![Fig. 2.13. 1D jump-return echo 1H imino spectrum of the TAR RNA recorded in H₂O. Assignments for observable G and U imino protons are indicated and shown in bold in the secondary structure representation.](image-url)
rapidly with the bulk H\textsubscript{2}O, the spectrum was recorded with a jump-return echo sequence that avoids presaturation, while providing most efficient water suppression (128). The pyrimidine base protons can provide a valuable alternative, circumventing problems related to solvent exchange. H5-H6 cross-peaks can be conveniently monitored in 2D TOCSY or COSY spectra; an example is given in Fig. 2.14.

21. The sample conditions are surveyed directly by NMR spectroscopy as a function of RNA and Mg2+ concentration in a phosphate buffer (10 mM Na- or K-phosphate, pH 6–7) with moderate monovalent salt (typically 50–100 mM NaCl or KCl) in order to identify constructs and solution conditions suitable for a subsequent structure determination. The goal is to obtain the narrowest line width and best chemical shift dispersion for the observable imino and/or H5-H6 base protons that report on secondary structure formation.

22. Potential problems with interpretation of obtained NOESY cross-peak intensities in terms of 1H-1H distances in structure calculations arise mainly from the phenomenon called spin diffusion. Spin diffusion causes a breakdown of the isolated spin pair approximation because other nearby protons provide competing indirect pathways for observing the direct NOE between the two protons. Spin diffusion effects play a role, especially when longer NOESY mixing times (>100 ms) are used. This usually leads to damped NOESY cross-peak intensities that build up through the direct pathway, resulting in underestimated interproton distances. Additionally, multistep transfer pathways can occur, resulting in false NOE assignments. For example, the imino protons of guanines might show spin diffusion mediated NOEs to the imino protons of the

![Fig. 2.14. H5-H6 region of a 2D 1H,1H DQF-COSY (129) spectrum of the TAR RNA. Assignments for the pyrimidine H5-H6 cross peaks are indicated and shown in bold in the secondary structure representation.](image-url)
non-exchangeable aromatic H5 and H6 protons of cytidines in Watson-Crick base pairs through the cytidine amino pro-

23. Often ribose puckers are found with homonuclear H1′,H2′/H3′,H4′ coupling constants in the 3–6 Hz, indicative of conformational exchange between the C2′- and C3′-endo puckers. This mixed conformation is typically left unrestrained.

24. The quantitative analysis of scalar J-couplings, especially in the case of homonuclear 3J(H,H) couplings related to the ribose sugar pucker, becomes more and more difficult with increasing molecular weight. In contrast, the efficiency of cross-correlated relaxation pathways scales linearly with the overall correlation time of the molecule, which is related to its size. These new methods that exploit cross-correlated relaxation as a tool for structure determination should allow the characterization of conformations for larger RNA molecules, for which purpose J-coupling analysis is not feasible anymore.

25. Pf1-phage is commercially available (ASLA Biotech Ltd., Riga, Latvia). The phage solution can be exchanged into the NMR buffer by pelleting the phage in an ultracentrifuge (50K for 6 hours) and resuspending in NMR buffer multiple times. Prior to use, the phage should be spun down and resuspended by gently shaking for 6 hours with the RNA sample used in the isotropic experiments.

26. It does not appear that there will be a simple and quick procedure for NMR assignment of RNA molecules. Neglecting the problems with sensitivity or overlap, complete assignment requires a large number of experiments, if all of the optimized sequences are performed (~4 experiments for the bases, ~3 experiments to correlate the base resonances to the ribose, and ~2–3 experiments to correlate the ribose resonances). This results in a very rough estimate of about 20 days measurement time (assuming on average 2 days measurement time per experiment) for a RNA sample, with sample concentrations in the mM range and a molecular weight between 10 and 25kDa, carried out on spectrometers with at least 500 MHz (proton resonance frequency). The subsequent data analysis and structure elucidation tends to be even more time consuming due to the absence of robust, automated procedures so that a complete RNA structure analysis using procedures reviewed here can not be accomplished in less than 2 month.
Acknowledgments

The authors thank S. Daudenarde and G. Pérez-Alvarado for invaluable discussions. This work was supported by the National Institutes of Health (AI040187 and GM66669, to M.H.).

References

flanking the basic region. *J Mol Biol* 230, 90–110.

