SUMMARY
Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Positron emission tomography (PET) and single-photon emission tomography (SPECT) now are able to visualize and quantify changes in cerebral blood flow, glucose metabolism, and neurotransmitter function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being used to elucidate the genetic contribution to Parkinson’s disease and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments.

Key Words: Imaging; Parkinson’s disease; multiple system atrophy; progressive supranuclear palsy; essential tremor; differential diagnosis; positron emission tomography (PET); single-photon emission tomography (SPECT); dopamine transporter; dopamine receptor; cerebral blood flow; cerebral glucose metabolism.

1. INTRODUCTION
The differential diagnosis of the various parkinsonian disorders based on clinical symptoms alone is difficult (1–3). Clinical criteria for the diagnosis of Parkinson’s disease (PD) provide high sensitivity for detecting parkinsonism but show poor specificity for identifying brainstem Lewy body disease or for differentiating atypical and typical PD (4). Tremor is a classic feature of PD, although this can also be found in patients with progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). Similarly, a general criterion for diagnosing PD is a good, sustained response to levodopa (l-dopa) therapy, although, again, this also is found in some patients with MSA and dopa-responsive dystonia. Indeed, some post mortem histopathological studies have shown that as many as 25% of all patients who were diagnosed with PD before death had been misdiagnosed (1,2). Detecting preclinical disease by using biochemical markers for neurodegeneration has not been successful. Familial PD sometimes exhibits a mutation of the α-synuclein gene, but this cannot be used as a genetic marker for the majority of cases because the pathogenesis is rarely related to genetic mutation. These observations have contributed to the motivation for developing objective neuroimaging techniques that can differentiate between these disorders.

Structural changes induced by parkinsonian diseases are generally small and often only evident when the disease is in an advanced stage. Consequently, the diagnostic accuracy of anatomical imaging modalities (e.g., magnetic resonance imaging [MRI]) in neurodegenerative disorders is poor (5). Preceding changes in brain morphology, alterations in the way the brain consumes glucose, or disruptions in regional cerebral blood flow (rCBF) may provide useful indicators of neurodegeneration. However, it is likely that changes in neurotransmitter function, most notably in the dopaminergic system, will become evident long before structural, metabolic, or blood flow variations.

In general, positron emission tomography (PET) and single-photon emission tomography (SPECT) imaging have provided a better platform for the diagnosis of parkinsonian disorders than MRI. Functional imaging of neurodegenerative disease with PET and SPECT has followed two main paths; studies of blood flow and cerebral metabolism to detect abnormal tissue functioning or imaging of the dopaminergic neurotransmitter system to study the loss of dopamine neurons.

2. IMAGING BLOOD FLOW AND METABOLISM
PET studies of cerebral glucose metabolism have used the glucose analog [18F]fluorodeoxyglucose ([18F]FDG), whereas radioactive water (H2[15O]), and the SPECT tracers 99mTc-hexamethylpropylene amine oxime (99mTc-HMPAO) and 99mTc-ethylcysteinate dimer (99mTc-ECD) are markers of cere-
bral blood flow and perfusion. Striatal glucose metabolism and perfusion are generally found to be normal in PD (6–10), although some studies have demonstrated an asymmetry of striatal metabolism (11). Interestingly, atypical parkinsonian disorder has been differentiated from idiopathic PD by the appearance of striatal metabolic abnormalities in the atypical group (12), which may provide a useful adjunct to routine clinical examination. Many studies have shown more global cortical hypometabolism or hyperperfusion or a loss of posterior parietal metabolism with a pattern similar to that observed in Alzheimer’s, and other neurodegenerative diseases (8,9,13–18). Others have used the differences in regional metabolism or rCBF to discriminate between PD and MSA (19–21) or PSP (20). Studies of blood flow and glucose metabolism in patients with pure Lewy body disease with no features of Alzheimer’s disease have consistently shown biparietal, bitemporal hypometabolism, a pattern that was once thought to represent the signature of Alzheimer’s.

Imaging studies of glucose metabolism and CBF have shown important changes concomitant with degeneration in cognitive performance or autonomic failure (21–25). Although blood flow studies have shown a poor correlation with laterality in performance or autonomic failure important changes concomitant with degeneration in cognitive hypometabolism, a pattern that was once thought to represent the disease have consistently shown biparietal, bitemporal hypometabolism, a pattern that was once thought to represent the signature of Alzheimer’s.

Patterns of blood flow and metabolism have indicated conflicting results when the on- and off-dopamine replacement therapy conditions are compared. Both reduced (31,33,34) and normal (35,36) regional glucose metabolism and rCBF have been reported after L-dopa treatment.

Recent advances in image analysis, using the voxel-based statistical techniques, such as statistical parametric mapping (37,38), provide greater accuracy in detecting focal changes in CBF. These techniques compare changes in CBF, voxel-by-voxel, or in glucose metabolism to identify regions of statistically significant differences. Although statistical parametric mapping has found important applications in studies of blood flow and metabolic changes in neurodegenerative disease (39,40), it is limited to the comparison of groups of subjects, rather than the diagnosis of individuals. Other statistical methodologies have been developed to attempt to automate the diagnosis of patients with PD and other parkinsonian disorders, based on scans of individual subjects (41,42).

3. IMAGING THE DOPAMINERGIC SYSTEM

In general, the diagnostic accuracy of CBF and glucose metabolism in differentiating neurodegenerative disorders is relatively poor in comparison with direct imaging of the dopaminergic nigrostriatal pathway (20). Early PET studies of the nigrostriatal pathway used the uptake of 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]fluorodopa) as a measure of the integrity of dopamine neurons (43,44). [18F]fluorodopa measures changes in aromatic l-amino decarboxylase activity, which is dependent on the availability of striatal dopaminergic nerve terminals and is proportional to the number of dopamine neurons in the substantia nigra (45).

Quantitative parameters associated with [18F]fluorodopa uptake, such as the striatal-to-background uptake ratio, and the influx rate constant, have been shown to be useful indicators of dopaminergic degeneration in PD and other syndromes (46–67). Indeed, [18F]fluorodopa and PET are often regarded as the "gold standard" in the detection of dopamine neuronal loss (68), although the contributions from PET imaging and other direct measures of the dopaminergic binding sites, both pre- and postautopsy, are increasing (55,56,69–71). The analysis of [18F]fluorodopa PET studies is known to have a number of serious potential problems. [18F]fluorodopa is metabolized into a number of diffusible and nondiffusible labeled metabolites ([18F]-D-3-methyl-fluorodopa (30FD) in peripheral and brain tissue, and [18F]dopamine (PD-A), [18F]-3,4-dihydroxyphenylacetic acid (FDopaC), and [18F]homovanillic acid in brain tissue). A further issue with the distribution of [18F]fluorodopa in PET scans is the kinetic rate constants tend to disagree with in vitro measurements by a large factor (up to 10 times lower) (72–76). Despite the fact that in vivo measurements of the decarboxylation rate, k3, gave values considerably lower than in vitro measurements, it has been concluded that k3 accurately reflects striatal aromatic l-amino decarboxylase activity in vivo with [18F]fluorodopa PET (75,76). Other technical considerations, which are common to all PET and SPECT imaging techniques, include partial volume effects (62), which decrease the apparent striatal uptake of these tracers due to the limited resolution of the scanner.

Direct measurements of dopamine transporter binding sites are possible with [123I]iomazenil (77), the cocaine analogs [123I]CIT and [123I]IPS, and N-fluoropropyl-L-2-[123I]CIT in peripheral and brain tissue, and [18F]dopamine (PD-A), [18F]-3,4-dihydroxyphenylacetic acid (FDopaC), and [18F]homovanillic acid in brain tissue. A further issue with the distribution of [18F]fluorodopa in PET scans is the kinetic rate constants tend to disagree with in vitro measurements by a large factor (up to 10 times lower) (72–76). Despite the fact that in vivo measurements of the decarboxylation rate, k3, gave values considerably lower than in vitro measurements, it has been concluded that k3 accurately reflects striatal aromatic l-amino decarboxylase activity in vivo with [18F]fluorodopa PET (75,76). Other technical considerations, which are common to all PET and SPECT imaging techniques, include partial volume effects (62), which decrease the apparent striatal uptake of these tracers due to the limited resolution of the scanner.

Direct measurements of dopamine transporter binding sites are possible with [123I]iomazenil (77), the cocaine analogs [123I]CIT and [123I]IPS, and N-fluoropropyl-L-2-[123I]CIT in peripheral and brain tissue, and [18F]dopamine (PD-A), [18F]-3,4-dihydroxyphenylacetic acid (FDopaC), and [18F]homovanillic acid in brain tissue. A further issue with the distribution of [18F]fluorodopa in PET scans is the kinetic rate constants tend to disagree with in vitro measurements by a large factor (up to 10 times lower) (72–76). Despite the fact that in vivo measurements of the decarboxylation rate, k3, gave values considerably lower than in vitro measurements, it has been concluded that k3 accurately reflects striatal aromatic l-amino decarboxylase activity in vivo with [18F]fluorodopa PET (75,76). Other technical considerations, which are common to all PET and SPECT imaging techniques, include partial volume effects (62), which decrease the apparent striatal uptake of these tracers due to the limited resolution of the scanner.

Direct measurements of dopamine transporter binding sites are possible with [123I]iomazenil (77), the cocaine analogs [123I]CIT and [123I]IPS, and N-fluoropropyl-L-2-[123I]CIT in peripheral and brain tissue, and [18F]dopamine (PD-A), [18F]-3,4-dihydroxyphenylacetic acid (FDopaC), and [18F]homovanillic acid in brain tissue. A further issue with the distribution of [18F]fluorodopa in PET scans is the kinetic rate constants tend to disagree with in vitro measurements by a large factor (up to 10 times lower) (72–76). Despite the fact that in vivo measurements of the decarboxylation rate, k3, gave values considerably lower than in vitro measurements, it has been concluded that k3 accurately reflects striatal aromatic l-amino decarboxylase activity in vivo with [18F]fluorodopa PET (75,76). Other technical considerations, which are common to all PET and SPECT imaging techniques, include partial volume effects (62), which decrease the apparent striatal uptake of these tracers due to the limited resolution of the scanner.

Direct measurements of dopamine transporter binding sites are possible with [123I]iomazenil (77), the cocaine analogs [123I]CIT and [123I]IPS, and N-fluoropropyl-L-2-[123I]CIT in peripheral and brain tissue, and [18F]dopamine (PD-A), [18F]-3,4-dihydroxyphenylacetic acid (FDopaC), and [18F]homovanillic acid in brain tissue. A further issue with the distribution of [18F]fluorodopa in PET scans is the kinetic rate constants tend to disagree with in vitro measurements by a large factor (up to 10 times lower) (72–76). Despite the fact that in vivo measurements of the decarboxylation rate, k3, gave values considerably lower than in vitro measurements, it has been concluded that k3 accurately reflects striatal aromatic l-amino decarboxylase activity in vivo with [18F]fluorodopa PET (75,76). Other technical considerations, which are common to all PET and SPECT imaging techniques, include partial volume effects (62), which decrease the apparent striatal uptake of these tracers due to the limited resolution of the scanner.
pyrrolidinyl) methyl] carboxamido-2,3-dihydrobenzofuran ([123I]IBF) (91,92), S-N-(1-ethyl-2-pyrrolidinyl) methyl]-5-

iodo-2,3-dimethoxybenzamide ([123I]epidepride) (93,94) and for PET include S-(-)-3,5-dichloro-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-hydroxy-6-methoxybenzamide ([11C]raclopride) (95) and [11C] or [18F]N-methylspiroperidol (96,97).

PET and SPECT studies of radiotracer binding to postsynaptic dopamine receptors and presynaptic dopamine transporters have proved to be powerful techniques for quantifying the loss of dopaminergic neurons in normal aging (98–107), PD (67,108–162) and other neurodegenerative disorders (48, 143,163–184). Studies of neuronal degeneration associated with the effects of normal aging have indicated that, whereas dopamine transporter concentrations decrease as a natural consequence of aging, the changes are small compared with the effects of disease (106). PET and SPECT studies have indicated a consistent pattern of dopaminergic neuronal loss in PD, usually with more pronounced depletion in the putamen rather than in the caudate (Fig. 2). In addition, there is frequently a marked asymmetry, particularly in the early stages of the disease (Fig. 3), and a good correlation with symptom severity (114,161) and illness duration (152). Most importantly, imaging studies may be sensitive enough to detect very early PD (4,64,115,123,130,141,185–189), perhaps even before clinical symptoms become apparent.

Characteristically, PD begins with unilateral symptoms of motor deficit, which gradually progress bilaterally over time. Studies of patients with early hemi-PD have shown that, despite the subject exhibiting only one-sided clinical symptoms, the
PET and SPECT findings demonstrated bilateral decreases in tracer binding, with a greater reduction in the side contralateral to the clinical signs (41, 115, 123, 190, 191). The ability of PET and SPECT to detect presymptomatic PD may have important consequences for the screening of familial PD (187, 188, 192). PET and SPECT studies of parkinsonian kindreds have implicated a genetic foundation for familial PD, including mutations in the parkin gene. Hereditary parkinsonism has been detected in asymptomatic relatives with heterozygous parkin mutations, using imaging to determine the extent of neuronal damage (187, 193–196). Indeed, PET and SPECT imaging of the dopaminergic system is able to demonstrate presynaptic dysfunction in asymptomatic relatives, which is fully compatible with early parkinsonism (187). Even subjects with apparently normal alleles exhibited reduced dopaminergic function on imaging, indicating a preclinical disease in these subjects that is likely to progress to full PD (187). The same features were observed in asymptomatic twins, both monzygotic and dizygotic, of a sibling with parkinsonism (188).

Although most of the PET and SPECT imaging studies have shown highly significant differences between groups of Parkinson’s patients and age-matched normal controls, the statistically significant differential diagnosis of an individual subject is more problematic. Patients with severe PD are easily separated from healthy controls even by simple visual inspection of striatal images, quantified using some form of discriminant analysis (122, 126, 150, 152, 164, 186, 197) possessing a sensitivity and specificity close to 100% in the proper clinical setting. The differentiation between PD and vascular parkinsonism (175, 182) and between PD and drug-induced parkinsonism (133) also appears possible using imaging of the dopaminergic system. However, patients presenting much earlier in the course of the disease are more difficult to detect, with potentially significant overlap with an age-matched control group (185, 198) and consequential loss of diagnostic accuracy. The situation may be further complicated if the early differential diagnosis between several neurodegenerative disorders is required. Many of the symptoms associated with parkinsonian disorders are nonspecific, which is why the accurate clinical diagnosis of these diseases is difficult. Studies have shown little difference between radiotracer binding to dopamine transporters in patients with PD, MSA, or PSP (164, 166) (Fig. 4).

Based on current methods of analysis, it appears that the detection of early PD, or the differential diagnosis between various neurodegenerative disorders, may not be possible in individual cases based on imaging of a single neurotransmitter system alone (121). Interestingly, progress on the differential diagnosis of PD and other parkinsonian disorders may come from PET and SPECT imaging outside the brain. Recent studies of the functional integrity of postganglionic cardiac sympathetic neurons, using [123I]MBG or [11C]HED, have indicated a distinct difference between cardiac autonomic dysfunction in patients with PD and those with MSA (199, 200).

4. MULTIMODALITY AND MULTITRACER STUDIES

The relative merits of anatomical and functional imaging have been combined in some studies utilizing several different radiotracers or data from both MRI/PER or SPECT. Regional glucose metabolism has been studied in parkinsonian disorders with [18F]FDG and PET, and the data combined with striatal [18F]fluorodopa uptake measurements to give an improved diagnostic indicator, and a better understanding of the underlying disease processes (19, 51, 59, 201). However, it should be noted that the improvement was relatively small over the good predictive capabilities of [18F]fluorodopa by itself in these patient groups. Some studies have used the complementary information coming from structural MRI and functional [18F]FDG PET in distinguishing between control subjects and patients with MSA (53, 202–205), in whom both focal MRI hypointensities, changes in striatal and midbrain size, and reduced glucose metabolism occurred on the side contralateral to clinical symptoms. Magnetic resonance spectroscopy adds an important new probe to complement functional PET and SPECT imaging studies (204). Other studies have combined data from MRI and postsynaptic dopamine receptor concentrations using [18F]IBZM and SPECT, giving useful information on the involvement of multiple brain regions in PSP (206) and MSA (207).

However, the greatest discrimination between various neurodegenerative disorders may be found using PET or SPECT imaging of both pre- and postsynaptic dopaminergic function (116, 121, 208). A study of [18F]β-CIT and [123I]IBZM binding in patients with early PD showed marked unilateral reductions in dopamine transporters measured by [123I]IBZM concomitant with elevated dopamine D2 receptor binding of [123I]IBZM (209). Recent SPECT studies investigating pre- and postsynaptic dopamine binding sites in the differential diagnosis of PD, MSA, and PSP have shown promising results, with a reduction in dopamine transporter availability in all diseases, and some discrimination between disorders in the pattern of dopamine D2 receptor concentrations (142, 210, 211) (Fig. 5). Similar results were observed in PET studies of early Parkinson’s patients, where striatal [18F]fluorodopa uptake was reduced and [11C]raclopride binding was upregulated, with the degree of increase in dopamine receptor binding inversely proportional to disease severity (47, 55). These studies also used [18F]FDG imaging of the same patients to determine the optimum combination of neuroreceptor function and glucose metabolism to differentiate between healthy controls and patients with PD (47, 55). The results suggest that striatal [18F]FDG and particularly [11C]raclopride are sensitive to striatal function and may help with the characterization of patients with MSA, whereas [18F]fluorodopa can accurately detect nigrostriatal dopaminergic abnormalities consistent with parkinsonian disorders. Other parkinsonian syndromes, such as Wilson disease, a disorder related to copper deposition, have been studied using imaging and demonstrate a significant decline in dopaminergic function, both pre- and postsynaptic, that can be differentiated from idiopathic PD (170).

SPECT imaging of both pre- and postsynaptic dopamine binding sites simultaneously has now been performed in recent studies on primates, using [18F]TRODAT-1 and [123I]IBZM or [123I]IBF, separating the two radiotracers based on their different energy spectra (212, 213). The possibility of simultaneously imaging both dopamine transporters and D2 receptors in neurodegenerative disorders is an exciting prospect, providing a unique probe in the investigation and diagnosis of these diseases.
Fig. 4. Presynaptic dopamine transporter imaging with SPECT and $[^{123}]$I-FP-CIT, used to distinguish between disease with and without nigrostriatal deficit. Whereas neurodegenerative parkinsonian syndromes such as PD, MSA, and PSP present with compromised dopamine terminal function, illnesses without involvement of those terminals (e.g., essential tremor (ET)) present with normal findings. Images courtesy of Prof. Klaus Tatsch, University of Munich. See color version on Companion CD.
5. IMAGING OTHER NEUROTRANSMITTER SYSTEMS

Although most imaging studies have investigated the effects of parkinsonian disorders on the dopaminergic system, neuropathologic and biochemical studies suggest that serotonin neurons also are affected by the disease process (214). The integrity of serotonin neurons in the midbrain region can be studied using the SPECT tracer $[^{123}I]\beta$-CIT (215,216). Although this radioligand is more commonly associated with measurements of the dopamine transporter, it also binds with high affinity to the serotonin transporter. However, owing to the high concentration of dopamine transporters in the striatum, imaging of the serotonergic system with this tracer is limited to the midbrain (217). Despite these technical difficulties, studies suggest that dopamine and serotonin transporters are differentially affected in PD, and serotonin transporters in the midbrain region may not be affected in relatively early stages of PD (218,219). In later stages of the disease, serotonin transporters are reduced in thalamic and frontal areas of the brain and correlate with scores of disease severity (139). Indeed, others have demonstrated that dysfunction in the serotonin system is closely related to the neuropsychiatric symptoms of PD, whereas the dopaminergic system correlates more with motor deficits (220). This is not unexpected, because the serotonin transporter is a well-known target for antidepressant drugs (221). However, the role of imaging the serotonin system in the differential diagnosis of parkinsonian disorders is still unclear and may obtain a more prominent position using the more selective serotonin transporter PET and SPECT ligands that have been developed recently (222–230).

Fig. 5. Postsynaptic dopamine D2 receptor imaging with $[^{123}I]\text{IBZM SPECT}$ used to distinguish between PD and atypical parkinsonian syndromes. PD patients present with normal or increased D2 receptor binding suggesting preserved or upregulated postsynaptic receptors, whereas in atypical parkinsonian syndromes (e.g., MSA) D2 receptor binding is reduced, reflecting degeneration of postsynaptic receptor binding sites. Presynaptic terminal function, measured with $[^{123}I]\text{FP-CIT SPECT}$, is compromised in both PD and atypical parkinsonian syndromes. Images courtesy of Prof. Klaus Tatsch, University of Munich. See color version on Companion CD.
6. CONCLUSION

There are a large number of imaging techniques that can be used to attempt to differentiate between the various neurodegenerative disorders. Taken in isolation, many of them can diagnose parkinsonian disorders with some success. However, the diagnosis at an early stage in the progression of each disease, possibly even before clinical symptoms have become apparent, is much more difficult and may require multiple imaging modalities or combinations of tracers. The widespread availability of SPECT imaging, perhaps combined with PET and less expensive tracers, may lead to the routine implementation of SPECT scanning in the diagnosis of parkinsonian disorders.

ACKNOWLEDGMENTS

The author is indebted to Dr. Andrew Newberg, University of Pennsylvania, and Prof. Klaus Tatsch, University of Munich, for providing the images to accompany this chapter. This work was supported in part by grants from the National Institutes of Health (ROI EB002774 and R01 AG017524).

REFERENCES

33. Markus HS, Costa DC, Lees AJ. HMPAO SPECT in Parkinson’s disease before and after levodopa: correlation with dopaminergic...

CHAPTER 2 / PET AND SPECT IN PARKINSON’S DISEASE

Bioimaging in Neurodegeneration
Broderick, P.A.; Rahni, D.N.; Kolodny, E.H. (Eds.)
ISBN: 978-1-58829-391-6
A product of Humana Press