Preface

The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution – air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste production, the seemingly idealistic demand for “zero discharge” can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identified: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the last two questions above.

The traditional approach of applying tried-and-true solutions to specific pollution problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a “methodology of pollution control.” However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken. Prerequisite to such planning is an understanding of the performance, potential, and limitations of the various methods of pollution abatement available for environmental scientists and engineers. In this series of handbooks, we will review at a tutorial level a broad spectrum of engineering systems (processes, operations, and methods) currently being utilized, or of potential utility, for pollution abatement. We believe that the unified interdisciplinary approach presented in these handbooks is a logical step in the evolution of environmental engineering.

Treatment of the various engineering systems presented will show how an engineering formulation of the subject flows naturally from the fundamental principles and theories of chemistry, microbiology, physics, and mathematics. This emphasis on fundamental science recognizes that engineering practice has in recent years become more firmly based on scientific principles rather than on its earlier dependency on empirical accumulation of facts. It is not intended, though, to neglect empiricism where such data lead quickly to the most economic design; certain engineering systems are not readily amenable to fundamental scientific analysis, and in these instances we have resorted to less science in favor of more art and empiricism.

Since an environmental engineer must understand science within the context of application, we first present the development of the scientific basis of a particular subject, followed by exposition of the pertinent design concepts and operations, and detailed explanations of their applications to environmental quality control or remediation. Throughout the series, methods of practical design and calculation are illustrated by numerical examples. These examples clearly demonstrate how organized, analytical reasoning leads to the most direct and clear solutions. Wherever possible, pertinent cost data have been provided.
Our treatment of pollution-abatement engineering is offered in the belief that the trained engineer should more firmly understand fundamental principles, be more aware of the similarities and/or differences among many of the engineering systems, and exhibit greater flexibility and originality in the definition and innovative solution of environmental pollution problems. In short, the environmental engineer should by conviction and practice be more readily adaptable to change and progress.

Coverage of the unusually broad field of environmental engineering has demanded an expertise that could only be provided through multiple authorships. Each author (or group of authors) was permitted to employ, within reasonable limits, the customary personal style in organizing and presenting a particular subject area; consequently, it has been difficult to treat all subject material in a homogeneous manner. Moreover, owing to limitations of space, some of the authors’ favored topics could not be treated in great detail, and many less important topics had to be merely mentioned or commented on briefly. All authors have provided an excellent list of references at the end of each chapter for the benefit of interested readers. As each chapter is meant to be self-contained, some mild repetition among the various texts was unavoidable. In each case, all omissions or repetitions are the responsibility of the editors and not the individual authors. With the current trend toward metrication, the question of using a consistent system of units has been a problem. Wherever possible, the authors have used the British system (fps) along with the metric equivalent (mks, cgs, or SIU) or vice versa. The editors sincerely hope that this duplicity of units’ usage will prove to be useful rather than being disruptive to the readers.

The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, including air and noise pollution control, solid waste processing and resource recovery, physicochemical treatment processes, biological treatment processes, biosolids management, water resources, natural control processes, radioactive waste disposal, and thermal pollution control; and (2) to employ a multimedia approach to environmental pollution control since air, water, soil, and energy are all interrelated.

As can be seen from the above handbook coverage, no consideration is given to pollution by the type of industry, or to the abatement of specific pollutants. Rather, the organization of the handbook series has been based on the three basic forms in which pollutants and waste are manifested: gas, solid, and liquid. In addition, noise pollution control is included in the handbook series.

This particular book, Vol. 10, *Environmental Biotechnology*, mainly deals with theories and principles of biotechnologies, and is a sister book to Vol. 11, *Environmental Bioengineering*, which mainly deals with environmental applications of microbiological processes and technologies.

Specifically this book, Vol. 10, *Environmental Biotechnology*, introduces the mechanisms of environmental biotechnology processes, different microbiological classifications useful for environmental engineers, microbiology, metabolism, and microbial ecology of natural and environmental engineering systems, microbial ecology and bioengineering of isolated life support systems, classification and design of solid-state processes and reactors, value-added biotechnological products from organic wastes, design of anaerobic suspended bioprocesses and reactors, selection and design of membrane bioreactors, natural environmental
biotechnologies systems, aerobic and anoxic suspended-growth systems, aerobic and anaerobic attached-growth systems, and sequencing batch reactors.

This book’s sister book, *Environmental Bioengineering*, Vol. 11, however, introduces various environmental applications, such as land disposal of biosolids, heavy metal removal by crops, pretreatment of sludge for sludge digestion, biotreatment of sludge, fermentation of kitchen garbage, phytoremediation for sludge treatment, phytoremediation for heavy metal removal from contaminated soils, vetiver grass bioremediation, wetland treatment, biosorption of heavy metals, rotating biological contactors (RBC) for carbon and nitrogen removal, anaerobic biofilm reactor, biological phosphorus removal, black and grey water treatment, milk wastewater treatment, tomato wastewater treatment, gelatine and animal glue production from skin wastes, fungal biomass protein production, algae harvest energy conversion, and living machine for wastewater treatment.

Both books together (Vols. 10 and 11) have been designed to serve as comprehensive biotechnology textbooks as well as wide-ranging reference books. We hope and expect they will prove of equal high value to advanced undergraduate and graduate students, to designers of water and wastewater treatment systems, and to scientists and researchers. The editors welcome comments from readers in all of these categories.

The editors are pleased to acknowledge the encouragement and support received from their colleagues and the publisher during the conceptual stages of this endeavor. We wish to thank the contributing authors for their time and effort, and for having patiently borne our reviews and numerous queries and comments. We are very grateful to our respective families for their patience and understanding during some rather trying times.

*Lawrence K. Wang, Lenox, Massachusetts*
*Volodymyr Ivanov, Singapore*
*Tay Joo Hwa, Singapore*
*Yung-Tse Hung, Cleveland, Ohio*
Environmental Biotechnology
2010, XXIV, 975 p., Hardcover
ISBN: 978-1-58829-166-0
A product of Humana Press