Gene Delivery
to Mammalian Cells

266. Genomics, Proteomics, and Clinical Bacteriology: Methods and Reviews, edited by Neil Woodford and Alan Johnson, 2004

265. RNA Interference, Editing, and Modification: Methods and Protocols, edited by Jonatha M. Gott, 2004

264. Protein Arrays: Methods and Protocols, edited by Eric Fung, 2004

262. Genetic Recombination Protocols, edited by Alan S. Waldman, 2004

261. Protein–Protein Interactions: Methods and Applications, edited by Haian Fu, 2004

257. mRNA Processing and Metabolism: Methods and Protocols, edited by Daniel R. Schoenberg, 2004

251. HPLC of Peptides and Proteins: Methods and Protocols, edited by Marie-Isabel Aguilar, 2004

250. MAP Kinase Signaling Protocols, edited by Rony Seger, 2004

249. Cytokine Protocols, edited by Marc De Ley, 2004

Gene Delivery to Mammalian Cells

Volume 2: Viral Gene Transfer Techniques

Edited by

William C. Heiser

Bio-Rad Laboratories
Hercules, CA
Preface

The efficiency of delivering DNA into mammalian cells has increased tremendously since DEAE dextran was first shown to be capable of enhancing transfer of RNA into mammalian cells in culture. Not only have other chemical methods been developed and refined, but also very efficient physical and viral delivery methods have been established. The technique of introducing DNA into cells has developed from transfecting tissue culture cells to delivering DNA to specific cell types and organs in vivo. Moreover, two important areas of biology—assessment of gene function and gene therapy—require successful DNA delivery to cells, driving the practical need to increase the efficiency and efficacy of gene transfer both in vitro and in vivo.

These two volumes of the *Methods in Molecular Biology* series, *Gene Delivery to Mammalian Cells*, are designed as a compendium of those techniques that have proven most useful in the expanding field of gene transfer in mammalian cells. It is intended that these volumes will provide a thorough background on chemical, physical, and viral methods of gene delivery, a synopsis of the myriad techniques currently available to introduce genes into mammalian cells, as well as a practical guide on how to accomplish this. It is my expectation that it will be useful to the novice in the field as well as to the scientist with expertise in gene delivery.

Volume 1: Nonviral Gene Transfer Techniques discusses delivery of DNA into cells by nonviral means, specifically chemical and physical methods. *Volume 2: Viral Gene Transfer Techniques* details procedures for delivering genes into cells using viral vectors. Each volume is divided into sections; each section begins with a chapter that provides an overview of the basis behind the delivery system(s) described in that section. The succeeding chapters provide detailed protocols for using these techniques to deliver genes to cells in vitro and in vivo. Many of these techniques have only been in practice for a few years and are still being refined and updated. Some are being used not only in basic science, but also in gene therapy applications.

I wish to express my thanks to all of the authors who made *Gene Delivery to Mammalian Cells: Volume 1: Nonviral Gene Transfer Techniques* and *Volume 2: Viral Gene Transfer Techniques* possible. I would especially like to thank those who contributed the overview chapter to each section. They provided invaluable discussions, suggestions, and assistance on organizing those sec-
tions. I would particularly like to mention Joanne Douglas, Tom Daly, and Bill Goins for their suggestions on topics and authors, Daxi Liu and Shan Lu for their helpful discussions, and Mark Jaroszeski for his suggestions on organizing the entire editing process.

William C. Heiser
Contents

Preface ... v
Contributors .. xiii

Part I. Delivery Using Adenoviruses

1. Adenovirus-Mediated Gene Delivery: An Overview
 Joanne T. Douglas .. 3

2. DNA Delivery to Cells in Culture: Generation of Adenoviral Libraries for High-Throughput Functional Screening
 Miroslava Ogorelkova, Seyyed Mehdy Elahi, David Gagnon, and Bernard Massie .. 15

3. Adenovirus-Mediated Gene Delivery to Skeletal Muscle
 Joanne T. Douglas .. 29

4. Delivery of Adenoviral DNA to Mouse Liver
 Sheila Connelly and Christine Mech .. 37

5. Delivery of DNA to Lung Airway Epithelium
 Daniel J. Weiss .. 53

6. Delivery of DNA to Pulmonary Endothelium Using Adenoviral Vectors
 Paul N. Reynolds .. 69

 Joseph M. Alisky and Beverly L. Davidson .. 91

8. Adenovirus-Mediated Gene Transfer to Tumor Cells
 Manel Cascalló and Ramon Alemany .. 121

9. Adenovirus-Mediated Gene Delivery to Dendritic Cells
 Laura Timares, Joanne T. Douglas, Bryan W. Tillman, Victor Krasnykh, and David T. Curiel .. 139

Part II. Delivery Using Adeno-Associated Viruses

10. Overview of Adeno-Associated Viral Vectors
 Thomas M. Daly .. 157

11. AAV Vector Delivery to Cells in Culture
 Andrew Smith, Roy Collaco, and James P. Trempe ... 167

12. AAV-Mediated Gene Transfer to Skeletal Muscle
 Roland W. Herzog .. 179
Contents

13. AAV-Mediated Gene Transfer to the Liver
 Thomas M. Daly ... 195

14. AAV-Mediated Gene Transfer to Mouse Lungs
 Christine L. Halbert and A. Dusty Miller 201

15. Gene Delivery to the Mammalian Heart Using AAV Vectors
 Danny Chu, Patricia A. Thistlethwaite, Christopher C. Sullivan,
 Mirta S. Grifman, and Matthew D. Weitzman 213

16. Gene Delivery to the Mouse Brain with Adeno-Associated Virus
 Marco A. Passini, Deborah J. Watson, and John H. Wolfe 225

17. Delivery of DNA to Tumor Cells In Vivo Using
 Adeno-Associated Virus
 Selvarangan Ponnazhagan and Frank Hoover 237

18. Gene Delivery to Human and Murine Primitive Hematopoietic
 Stem and Progenitor Cells by AAV2 Vectors
 Arun Srivastava .. 245

PART III. DELIVERY USING HERPES SIMPLEX VIRUSES

19. Delivery Using Herpes Simplex Virus: An Overview
 William F. Goins, Darren Wolfe, David M. Krisky, Qing Bai,
 Ed A. Burton, David J. Fink, and Joseph C. Glorioso 257

20. Gene Transfer to Skeletal Muscle Using Herpes Simplex
 Virus-Based Vectors
 Baohong Cao and Johnny Huard .. 301

21. Delivery of Herpes Simplex Virus-Based Vectors
 to the Nervous System
 James R. Goss, Atsushi Natsume, Darren Wolfe, Marina Mata,
 Joseph C. Glorioso, and David J. Fink 309

22. Gene Transfer to Glial Tumors Using Herpes Simplex Virus
 Ajay Niranjan, Darren Wolfe, Wendy Fellows, William F. Goins,
 Joseph C. Glorioso, Douglas Kondziolka,
 and L. Dade Lunsford .. 323

23. Delivery of Herpes Simplex Virus-Based Vectors to Stem Cells
 Darren Wolfe, James B. Wechuck, David M. Krisky, Julie P. Goff,
 William F. Goins, Ali Ozuer, Michael E. Epperly,
 Joel S. Greenberger, David J. Fink, and Joseph C. Glorioso 339
PART IV. DELIVERY USING BACULOVIRUSES
24. Baculovirus-Mediated Gene Delivery into Mammalian Cells
 Raymond V. Merrihew, Thomas A. Kost, and J. Patrick Condreay .. 355

PART V. DELIVERY USING LENTIVIRUSES
25. Gene Delivery by Lentivirus Vectors: An Overview
 Tal Kafri .. 367
26. Lentiviral Vectors for the Delivery of DNA into Mammalian Cells
 Roland Wolkowicz, Garry P. Nolan, and Michael A. Curran 391
27. Stable Gene Delivery to CNS Cells Using Lentiviral Vectors
 Deborah J. Watson, Brian A. Karolewski, and John H. Wolfe 413
28. Gene Delivery to Hematopoietic Stem Cells Using Lentiviral Vectors
 Hiroyuki Miyoshi ... 429
29. Delivery of Genes to the Eye Using Lentiviral Vectors
 Masayo Takahashi ... 439
30. Lentiviral Transduction of Human Dendritic Cells
 Roland Schroers and Si-Yi Chen ... 451

PART VI. DELIVERY USING RETROVIRUSES
 Nikunj Somia ... 463
32. Gene Delivery to Cells in Culture Using Retroviruses
 Nikunj Somia ... 491
33. Retrovirus-Mediated Gene Transfer to Tumors: Utilizing the Replicative Power of Viruses to Achieve Highly Efficient Tumor Transduction In Vivo
 Christopher R. Logg and Noriyuki Kasahara ... 499
34. Delivery of Genes to Hematopoietic Stem Cells
 Masafumi Onodera ... 527

PART VII. DELIVERY USING ALPHAVIRUSES
35. Delivery and Expression of Heterologous Genes in Mammalian Cells Using Self-Replicating Alphavirus Vectors
 Gunilla B. Karlsson and Peter Liljestøm ... 543

Index .. 559
CONTENTS OF THE COMPANION VOLUME
Volume I: Nonviral Gene Transfer Techniques

PART I. DELIVERY USING CHEMICAL METHODS
1. Chemical Methods for DNA Delivery: An Overview
 Dexi Liu, Evelyn F. Chiao, and Hui Tian
2. Gene Transfer into Mammalian Cells Using Calcium Phosphate and DEAE-Dextran
 Gregory S. Pari and Yiyang Xu
3. DNA Delivery to Cells in Culture Using Peptides
 Lei Zhang, Nicholas Ambulos, and A. James Mixson
4. DNA Delivery to Cells in Culture Using PNA Clamps
 Todd D. Giorgio and Shelby K. Wyatt
5. Dendrimer-Mediated Cell Transfection In Vitro
 James R. Baker, Jr., Anna U. Bielinska, and Jolanta F. Kukowska-Latallo
6. DNA Delivery to Cells in Culture Using Cationic Liposomes
 Shelby K. Wyatt and Todd D. Giorgio
7. Formulation of Synthetic Gene Delivery Vectors for Transduction of the Airway Epithelium
8. Cationic Liposome-Mediated DNA Delivery to the Lung Endothelium
 Young K. Song, Guisheng Zhang, and Dexi Liu
9. Delivery of DNA to Tumor Cells Using Cationic Liposomes
 Duen-Hwa Yan, Bill Spohn, and Mien-Chie Hung
10. Delivery of Transposon DNA to Lungs of Mice Using Polyethyleneimine-DNA Complexes
 Lalitha R. Belur and R. Scott McIvor

PART II. DELIVERY USING PHYSICAL METHODS
 Te-hui W. Chou, Subhabrata Biswas, and Shan Lu
12. Gene Delivery to Mammalian Cells by Microinjection
 Robert King
13. Delivery of DNA to Cells in Culture Using Particle Bombardment
 William C. Heiser
14. Delivery of DNA to Skin by Particle Bombardment
 Shixia Wang, Swati Joshi, and Shan Lu

15. Biolistic Transfection of Cultured Organotypic Brain Slices
 A. Kimberley McAllister

16. Efficient Electroporation of Mammalian Cells in Culture
 Peter A. Barry

17. Delivery of DNA to Skin by Electroporation
 Nathalie Dujardin and Véronique Préat

18. In Vivo DNA Electrotransfer in Skeletal Muscle
 Guenhaël Sanz, Saulius Šatkus, and Lluis M. Mir

19. Electrically Mediated Plasmid DNA Delivery to Solid Tumors In Vivo
 Mark J. Jaroszeski, Loree C. Heller, Richard Gilbert, and Richard Heller

20. Hydrodynamic Delivery of DNA
 Joseph E. Knapp and Dexi Liu

21. Naked DNA Gene Transfer in Mammalian Cells
 Guofeng Zhang, Vladimir G. Budker, James J. Ludtke, and Jon A. Wolff

22. Microparticle Delivery of Plasmid DNA to Mammalian Cells
 Mary Lynne Hedley and Shikha P. Barman

23. DNA Delivery to Cells in Culture Using Ultrasound
 Thomas P. McCreery, Robert H. Sweitzer, and Evan C. Unger

24. DNA Delivery to Cells In Vivo by Ultrasound
 Thomas P. McCreery, Robert H. Sweitzer, Evan C. Unger, and Sean Sullivan
Contributors

RAMON ALEMANY • Gene Therapy Program, Institut Català d’Oncologia, Barcelona, Spain
JOSEPH M. ALISKY • Marshfield Clinic Research Foundation, Marshfield, WI
QING BAI • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA
ED A. BURTON • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA
BAOHONG CAO • Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
MANEL CASCALLÓ • Gene Therapy Program, Institut Català d’Oncologia, Barcelona, Spain
ST-YI CHEN • Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
DANNY CHU • Division of Cardiothoracic Surgery, Department of Surgery, University of California San Diego Medical Center, San Diego, CA
ROY COLLACO • Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH
J. PATRICK CONDREAY • Department of Gene Expression and Protein Biochemistry, GlaxoSmithKline Research and Development, Research Triangle Park, NC
SHEILA CONNELLY • Advanced Vision Therapies Inc., Rockville, MD
DAVID T. CURIEL • Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, and the Gene Therapy Center, University of Alabama, Birmingham, AL
MICHAEL A. CURRAN • Department of Molecular and Cell Biology, University of California, Berkeley, CA
THOMAS M. DALY • Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
BEVERLY L. DAVIDSON • Program in Gene Therapy, Departments of Internal Medicine, Neurology, Physiology & Biophysics, University of Iowa College of Medicine, Iowa City, IA
JOANNE T. DOUGLAS • Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL
SEYYED MEHDY ELAHI • Institut de Recherches en Biotechnologie, Montréal, Québec, Canada
MICHAEL E. EPPERLY • Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
WENDY FELLOWS • Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
DAVID J. FINK • Departments of Molecular Genetics and Biochemistry, and Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA
DAVID GAGNON • Institut de Recherches en Biotechnologie, Montréal, Québec, Canada
JOSEPH C. GLORIOSO • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA
JULIE P. GOFF • Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
WILLIAM F. GOINS • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA
JAMES R. GOSS • Department of Neurology, University of Pittsburgh School of Medicine, and GRECC, VA Medical Center, Pittsburgh, PA
JOEL S. GREENBERGER • Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
MIRTA S. GRIFMAN • Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA
CHRISTINE L. HALBERT • Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA
ROLAND W. HERZOG • Department of Pediatrics, University of Pennsylvania Medical Center and The Children’s Hospital of Philadelphia, Philadelphia, PA
FRANK HOOVER • Department of Oncology, Gene Therapy Program, Haukeland Hospital, Bergen, Norway
JOHNNY HUARD • Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
TAL KAFRI • Gene Therapy Center, University of North Carolina, Chapel Hill, NC
GUNILLA B. KARLSSON • Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden, and Department of Vaccine Research, Swedish Institute for Infectious Disease Control, Solna, Sweden
BRIAN A. KAROLEWSKI • Department of Pathobiology and Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, and Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA
Contributors

NORIYUKI KASAHARA • Department of Medicine, School of Medicine, University of California, Los Angeles, CA

DOUGLAS KONDZIOLKA • Departments of Neurological Surgery and Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA

THOMAS A. KOST • Department of Gene Expression and Protein Biochemistry, GlaxoSmithKline Research and Development, Research Triangle Park, NC

VICTOR KRASNYKH • Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL

DAVID M. KRISKY • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA

PETER LILJESTROM • Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden, and Department of Vaccine Research, Swedish Institute for Infectious Disease Control, Solna, Sweden

CHRISTOPHER R. LOGG • Department of Medicine, School of Medicine, University of California, Los Angeles, CA

L. DADE LUNSFORD • Departments of Neurological Surgery, Radiation Oncology, and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA

BERNARD MASSIE • Institut de Recherches en Biotechnologie, Montréal, Québec, Canada

MARINA MATA • Department of Neurology, University of Pittsburgh School of Medicine, and GRECC, VA Medical Center, Pittsburgh, PA

CHRISTINE MECH • Genetic Therapy Inc., Gaithersburg, MD

RAYMOND V. MERRIHEW • Department of Assay Development and Compound Profiling, GlaxoSmithKline, Research Triangle Park, NC

A. DUSTY MILLER • Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA

HIROYUKI MIYOSHI • Subteam for Manipulation of Cell Fate, BioResource Center, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan

ATSUSHI NATSUME • Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA

AJAY NIRANJAN • Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA

GARRY P. NOLAN • Department of Microbiology and Immunology, Baxter Laboratory in Genetic Pharmacology, Stanford University, Stanford, CA

MIROSLAVA OGORELKova • Institut de Recherches en Biotechnologie, Montréal, Québec, Canada
Contributors

MASAFUMI ONODERA • Department of Hematology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan

ALI ÖZUE • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA

MARCO A. PASSINI • Department of Pathobiology and Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, and Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA

SELVARANGAN PONNAZHAGAN • Department of Pathology, University of Alabama, Birmingham, AL

PAUL N. REYNOLDS • Royal Adelaide Hospital Chest Clinic and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia

ROLAND SCHROERS • Department of Internal Medicine, University of Göttingen, Göttingen, Germany

ANDREW SMITH • Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH

NIKUNJ SOMIA • Institute of Human Genetics, University of Minnesota, Minneapolis, MN

BILL SPOHN • Departments of Molecular and Cellular Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX

ARUN SRIVASTAVA • Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN

CHRISTOPHER C. SULLIVAN • Division of Cardiothoracic Surgery, Department of Surgery, University of California San Diego Medical Center, San Diego, CA

MASAYO TAKAHASHI • Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan

PATRICIA A. THISTLETHWAITE • Division of Cardiothoracic Surgery, Department of Surgery, University of California San Diego Medical Center, San Diego, CA

BRYAN W. TILLMAN • Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL

LAURA TIMARES • Departments of Dermatology, Cell Biology, and Pathology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL

JAMES P. TREMPE • Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH
Contributors

DEBORAH J. WATSON • Department of Pathobiology and Center for Comparative Molecular Genetics, School of Veterinary Medicine, University of Pennsylvania, and Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA

JAMES B. WECHUCK • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA

DANIEL J. WEISS • Pulmonary and Critical Care, Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT

MATTHEW D. WEITZMAN • Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA

DARREN WOLFE • Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA

JOHN H. WOLFE • Department of Pathobiology and Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, and Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA

ROLAND WOLKOWICZ • Department of Microbiology and Immunology, Baxter Laboratory in Genetic Pharmacology, Stanford University, Stanford, CA
Gene Delivery to Mammalian Cells
Volume 2: Viral Gene Transfer Techniques
Heiser, W.C. (Ed.)
2004, XVIII, 566 p., Hardcover
ISBN: 978-1-58829-095-3
A product of Humana Press