Contents

1 Lipschitz Global Optimization ... 1
 1.1 Problem Statement .. 1
 1.2 Lipschitz Condition and Its Geometric Interpretation 7
 1.3 Multidimensional Approaches ... 10

2 One-Dimensional Algorithms and Their Acceleration 19
 2.1 One-Dimensional Lipschitz Global Optimization 19
 2.2 Geometric LGO Methods for Non-differentiable Functions 22
 2.3 Geometric LGO Methods for Differentiable Functions
 with the Lipschitz First Derivatives 30
 2.4 Acceleration Techniques Embedded in the Univariate Global
 Optimization ... 36
 2.5 Numerical Illustrations .. 44

3 Diagonal Approach and Efficient Diagonal Partitions 53
 3.1 General Diagonal Scheme ... 53
 3.2 Analysis of Traditional Diagonal Partition Schemes 59
 3.3 Non-redundant Diagonal Partition Strategy 65

4 Global Optimization Algorithms Based on the Non-redundant
 Partitions .. 77
 4.1 Multiple Estimates of the Lipschitz Constant 77
 4.2 Derivative-Free Diagonal Method MULTL 79
 4.2.1 Theoretical Background of MULTL: Lower Bounds 79
 4.2.2 Theoretical Background of MULTL: Finding
 Non-dominated Hyperintervals ... 82
 4.2.3 Description of the MULTL Algorithm
 and its Convergence Analysis .. 87
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 One-Point-Based Method MULTK for Differentiable Problems</td>
<td>93</td>
</tr>
<tr>
<td>4.3.1 Theoretical Background of MULTK: Lower Bounds</td>
<td>94</td>
</tr>
<tr>
<td>4.3.2 Theoretical Background of MULTK: Non-dominated Hyperintervals</td>
<td>96</td>
</tr>
<tr>
<td>4.3.3 Description of the MULTK Algorithm and its Convergence Analysis</td>
<td>98</td>
</tr>
<tr>
<td>4.4 Numerical Experiments with the MULTL and MULTK Methods</td>
<td>101</td>
</tr>
<tr>
<td>4.5 A Case Study: Fitting a Sum of Dumped Sinusoids to a Series of Observations</td>
<td>110</td>
</tr>
<tr>
<td>4.5.1 Examples Illustrating the Complexity of the Problem</td>
<td>113</td>
</tr>
<tr>
<td>4.5.2 Derivatives and Simplifications of the Benchmark Objective Functions</td>
<td>115</td>
</tr>
<tr>
<td>4.5.3 Numerical Examples and Simulation Study</td>
<td>117</td>
</tr>
<tr>
<td>References</td>
<td>121</td>
</tr>
</tbody>
</table>
Deterministic Global Optimization
An Introduction to the Diagonal Approach
Sergeyev, Y.D.; Kvasov, D.E.
2017, X, 136 p. 39 illus., Softcover
ISBN: 978-1-4939-7197-8