Contents

1 Asymptotic Freeness of Gaussian Random Matrices 1
1.1 Moments and cumulants of random variables 2
1.2 Moments of a Gaussian random variable 3
1.3 Gaussian vectors .. 5
1.4 The moments of a standard complex Gaussian random variable .. 5
1.5 Wick’s formula .. 6
1.6 Gaussian random matrices 7
1.7 A genus expansion for the GUE 8
1.8 Non-crossing partitions and permutations 9
1.9 Wigner’s semi-circle law .. 11
1.10 Asymptotic freeness of independent GUE’s 12
1.11 Freeness and asymptotic freeness 14
1.12 Basic properties of freeness 15
1.13 Classical moment-cumulant formulas 18
1.14 Additional exercises .. 20

2 The Free Central Limit Theorem and Free Cumulants 23
2.1 The classical and free central limit theorems 23
2.1.1 Classical central limit theorem 28
2.1.2 Free central limit theorem 28
2.2 Non-crossing partitions and free cumulants 32
2.3 Products of free random variables 39
2.4 Functional relation between moment series and cumulant series .. 41
2.5 Subordination and the non-commutative derivative 44

3 Free Harmonic Analysis .. 51
3.1 The Cauchy transform .. 52
3.2 Moments and asymptotic expansions 66
3.3 Analyticity of the R-transform: compactly supported measures .. 67
3.4 Measures with finite variance 71
3.5 The free additive convolution of probability measures with finite variance ... 77
3.6 The R-transform and free additive convolution of arbitrary measures... 82

4 Asymptotic Freeness for Gaussian, Wigner, and Unitary Random Matrices ... 93
4.1 Asymptotic freeness: averaged convergence versus almost sure convergence ... 93
4.2 Asymptotic freeness of Gaussian random matrices and deterministic matrices ... 99
4.3 Asymptotic freeness of Haar distributed unitary random matrices and deterministic matrices ... 102
4.4 Asymptotic freeness between Wigner and deterministic random matrices ... 106
4.5 Examples of random matrix calculations 116
4.5.1 Wishart matrices and the Marchenko-Pastur distribution... 116
4.5.2 Sum of random matrices 118
4.5.3 Product of random matrices 119

5 Fluctuations and Second Order Freeness .. 121
5.1 Fluctuations of GUE random matrices 122
5.2 Fluctuations of several matrices 132
5.3 Second order probability space and second order freeness 136
5.4 Second order cumulants .. 142
5.5 Functional relation between second order moment and cumulant series ... 149
5.6 Diagonalization of fluctuations 151
5.6.1 Diagonalization in the one-matrix case 152
5.6.2 Diagonalization in the multivariate case 158

6 Free Group Factors and Freeness .. 159
6.1 Group (von Neumann) algebras 160
6.2 Free group factors .. 161
6.3 Free product of groups ... 162
6.4 Moments and isomorphism of von Neumann algebras 162
6.5 Freeness in the free group factors 163
6.6 The structure of free group factors ... 165
6.7 Compression of free group factors .. 166
6.8 Circular operators and complex Gaussian random matrices 168
6.9 Proof of $\mathcal{L}(\mathbb{F}_3)_{1/2} \simeq \mathcal{L}(\mathbb{F}_9)$... 171
6.10 The general case $\mathcal{L}(\mathbb{F}_n)_{1/k} \simeq \mathcal{L}(\mathbb{F}_{1+(n-1)k^2})$... 173
6.11 Interpolating free group factors .. 173
6.12 The dichotomy for the free group factor isomorphism problem .. 174
7 Free Entropy χ: The Microstates Approach via Large Deviations 175
 7.1 Motivation ... 175
 7.2 Large deviation theory and Cramér’s theorem 176
 7.3 Sanov’s theorem and entropy 181
 7.4 Back to random matrices and one-dimensional free entropy 182
 7.5 Definition of multivariate free entropy 185
 7.6 Some important properties of χ 187
 7.7 Applications of free entropy to operator algebras 189
 7.7.1 The proof of Theorem 7, part (i) 191
 7.7.2 The proof of Theorem 7, part (iii) 193

8 Free Entropy χ^*: The Non-microstates Approach via Free
Fisher Information .. 195
 8.1 Non-commutative derivatives 196
 8.2 ∂_i as unbounded operator on $\mathbb{C}(x_1, \ldots, x_n)$ 198
 8.3 Conjugate variables and free Fisher information Φ^* 203
 8.4 Additivity of Φ^* and freeness 212
 8.5 The non-microstates free entropy χ^* 216
 8.6 Operator algebraic applications of free Fisher information ... 217
 8.7 Absence of atoms for self-adjoint polynomials 219
 8.8 Additional exercises ... 221

9 Operator-Valued Free Probability Theory and Block Random
Matrices ... 225
 9.1 Gaussian block random matrices 225
 9.2 General theory of operator-valued free probability 234
 9.3 Relation between scalar-valued and matrix-valued cumulants .. 240
 9.4 Moving between different levels 242
 9.5 A non-self-adjoint example 245

10 Deterministic Equivalents, Polynomials in Free Variables,
and Analytic Theory of Operator-Valued Convolution 249
 10.1 The general concept of a free deterministic equivalent 249
 10.2 A motivating example: reduction to multiplicative convolution .. 252
 10.3 The general case: reduction to operator-valued additive
 convolution via the linearization trick 253
 10.4 Analytic theory of operator-valued convolutions 257
 10.4.1 General notations .. 258
 10.4.2 Operator-valued additive convolution 258
 10.4.3 Operator-valued multiplicative convolution 259
 10.5 Numerical example ... 259
 10.6 The case of rational functions 260
 10.7 Additional exercise .. 262

11 Brown Measure .. 263
 11.1 Brown measure for normal operators 263
 11.2 Brown measure for matrices 264
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Fuglede-Kadison determinant in finite von Neumann algebras</td>
<td>266</td>
</tr>
<tr>
<td>11.4</td>
<td>Subharmonic functions and their Riesz measures</td>
<td>267</td>
</tr>
<tr>
<td>11.5</td>
<td>Definition of the Brown measure</td>
<td>268</td>
</tr>
<tr>
<td>11.6</td>
<td>Brown measure of R-diagonal operators</td>
<td>271</td>
</tr>
<tr>
<td>11.6.1</td>
<td>A little about the proof</td>
<td>272</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Example: circular operator</td>
<td>273</td>
</tr>
<tr>
<td>11.6.3</td>
<td>The circular law</td>
<td>273</td>
</tr>
<tr>
<td>11.6.4</td>
<td>The single ring theorem</td>
<td>274</td>
</tr>
<tr>
<td>11.7</td>
<td>Brown measure of elliptic operators</td>
<td>275</td>
</tr>
<tr>
<td>11.8</td>
<td>Brown measure for unbounded operators</td>
<td>275</td>
</tr>
<tr>
<td>11.9</td>
<td>Hermitization method: using operator-valued free probability for calculating the Brown measure</td>
<td>276</td>
</tr>
<tr>
<td>11.10</td>
<td>Brown measure of arbitrary polynomials in free variables</td>
<td>277</td>
</tr>
<tr>
<td>12</td>
<td>Solutions to Exercises</td>
<td>281</td>
</tr>
<tr>
<td>12.1</td>
<td>Solutions to exercises in Chapter 1</td>
<td>281</td>
</tr>
<tr>
<td>12.2</td>
<td>Solutions to exercises in Chapter 2</td>
<td>291</td>
</tr>
<tr>
<td>12.3</td>
<td>Solutions to exercises in Chapter 3</td>
<td>294</td>
</tr>
<tr>
<td>12.4</td>
<td>Solutions to exercises in Chapter 4</td>
<td>301</td>
</tr>
<tr>
<td>12.5</td>
<td>Solutions to exercises in Chapter 5</td>
<td>302</td>
</tr>
<tr>
<td>12.6</td>
<td>Solutions to exercises in Chapter 6</td>
<td>303</td>
</tr>
<tr>
<td>12.7</td>
<td>Solutions to exercises in Chapter 7</td>
<td>305</td>
</tr>
<tr>
<td>12.8</td>
<td>Solutions to exercises in Chapter 8</td>
<td>307</td>
</tr>
<tr>
<td>12.9</td>
<td>Solutions to exercises in Chapter 9</td>
<td>313</td>
</tr>
<tr>
<td>12.10</td>
<td>Solutions to exercises in Chapter 10</td>
<td>314</td>
</tr>
<tr>
<td>12.11</td>
<td>Solutions to exercises in Chapter 11</td>
<td>315</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>319</td>
</tr>
<tr>
<td>Index of Exercises</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>331</td>
</tr>
</tbody>
</table>
Free Probability and Random Matrices
Mingo, J.A.; Speicher, R.
2017, XIV, 336 p. 45 illus., Hardcover
ISBN: 978-1-4939-6941-8