3.4 Measures with finite variance 71
3.5 The free additive convolution of probability measures with
finite variance .. 77
3.6 The R-transform and free additive convolution of arbitrary
measures .. 82

4 Asymptotic Freeness for Gaussian, Wigner, and Unitary
Random Matrices .. 93
4.1 Asymptotic freeness: averaged convergence versus almost
sure convergence ... 93
4.2 Asymptotic freeness of Gaussian random matrices
and deterministic matrices .. 99
4.3 Asymptotic freeness of Haar distributed unitary random
matrices and deterministic matrices 102
4.4 Asymptotic freeness between Wigner and deterministic
random matrices .. 106
4.5 Examples of random matrix calculations 116
 4.5.1 Wishart matrices and the Marchenko-Pastur
distribution ... 116
 4.5.2 Sum of random matrices 118
 4.5.3 Product of random matrices 119

5 Fluctuations and Second Order Freeness 121
5.1 Fluctuations of GUE random matrices 122
5.2 Fluctuations of several matrices 132
5.3 Second order probability space and second order freeness .. 136
5.4 Second order cumulants ... 142
5.5 Functional relation between second order moment
and cumulant series .. 149
5.6 Diagonalization of fluctuations 151
 5.6.1 Diagonalization in the one-matrix case 152
 5.6.2 Diagonalization in the multivariate case 158

6 Free Group Factors and Freeness 159
6.1 Group (von Neumann) algebras 160
6.2 Free group factors .. 161
6.3 Free product of groups ... 162
6.4 Moments and isomorphism of von Neumann algebras 162
6.5 Freeness in the free group factors 163
6.6 The structure of free group factors 165
6.7 Compression of free group factors 166
6.8 Circular operators and complex Gaussian random matrices .. 168
6.9 Proof of $L(\mathbb{F}_3)_{1/2} \simeq L(\mathbb{F}_9)$ 171
6.10 The general case $L(\mathbb{F}_n)_{1/k} \simeq L(\mathbb{F}_{1+(n-1)k^2})$ 173
6.11 Interpolating free group factors 173
6.12 The dichotomy for the free group factor isomorphism problem .. 174
7 Free Entropy χ: The Microstates Approach via Large Deviations... 175
 7.1 Motivation .. 175
 7.2 Large deviation theory and Cramér’s theorem 176
 7.3 Sanov’s theorem and entropy 181
 7.4 Back to random matrices and one-dimensional free entropy ... 182
 7.5 Definition of multivariate free entropy 185
 7.6 Some important properties of χ 187
 7.7 Applications of free entropy to operator algebras 189
 7.7.1 The proof of Theorem 7, part (i) 191
 7.7.2 The proof of Theorem 7, part (iii) 193

8 Free Entropy χ^*: The Non-microstates Approach via Free
 Fisher Information ... 195
 8.1 Non-commutative derivatives 196
 8.2 ∂_1 as unbounded operator on $C(x_1, \ldots, x_n)$ 198
 8.3 Conjugate variables and free Fisher information Φ^* 203
 8.4 Additivity of Φ^* and freeness 212
 8.5 The non-microstates free entropy χ^* 216
 8.6 Operator algebraic applications of free Fisher information ... 217
 8.7 Absence of atoms for self-adjoint polynomials 219
 8.8 Additional exercises ... 221

9 Operator-Valued Free Probability Theory and Block Random
 Matrices ... 225
 9.1 Gaussian block random matrices 225
 9.2 General theory of operator-valued free probability 234
 9.3 Relation between scalar-valued and matrix-valued cumulants ... 240
 9.4 Moving between different levels 242
 9.5 A non-self-adjoint example .. 245

10 Deterministic Equivalents, Polynomials in Free Variables,
 and Analytic Theory of Operator-Valued Convolution 249
 10.1 The general concept of a free deterministic equivalent 249
 10.2 A motivating example: reduction to multiplicative convolution 252
 10.3 The general case: reduction to operator-valued additive
 convolution via the linearization trick 253
 10.4 Analytic theory of operator-valued convolutions 257
 10.4.1 General notations ... 258
 10.4.2 Operator-valued additive convolution 258
 10.4.3 Operator-valued multiplicative convolution 259
 10.5 Numerical example ... 259
 10.6 The case of rational functions 260
 10.7 Additional exercise ... 262

11 Brown Measure .. 263
 11.1 Brown measure for normal operators 263
 11.2 Brown measure for matrices 264
11.3 Fuglede-Kadison determinant in finite von Neumann algebras... 266
11.4 Subharmonic functions and their Riesz measures 267
11.5 Definition of the Brown measure............................. 268
11.6 Brown measure of \(R \)-diagonal operators 271
 11.6.1 A little about the proof................................ 272
 11.6.2 Example: circular operator............................. 273
 11.6.3 The circular law....................................... 273
 11.6.4 The single ring theorem............................... 274
11.7 Brown measure of elliptic operators.......................... 275
11.8 Brown measure for unbounded operators...................... 275
11.9 Hermitization method: using operator-valued free probability for calculating the Brown measure 276
11.10 Brown measure of arbitrary polynomials in free variables ... 277

12 Solutions to Exercises .. 281
 12.1 Solutions to exercises in Chapter 1......................... 281
 12.2 Solutions to exercises in Chapter 2........................ 291
 12.3 Solutions to exercises in Chapter 3......................... 294
 12.4 Solutions to exercises in Chapter 4......................... 301
 12.5 Solutions to exercises in Chapter 5........................ 302
 12.6 Solutions to exercises in Chapter 6........................ 303
 12.7 Solutions to exercises in Chapter 7......................... 305
 12.8 Solutions to exercises in Chapter 8........................ 307
 12.9 Solutions to exercises in Chapter 9........................ 313
 12.10 Solutions to exercises in Chapter 10...................... 314
 12.11 Solutions to exercises in Chapter 11...................... 315

References.. 319

Index of Exercises .. 329

Index ... 331
Free Probability and Random Matrices
Mingo, J.A.; Speicher, R.
2017, XIV, 336 p. 45 illus., Hardcover
ISBN: 978-1-4939-6941-8