Unexpected adverse toxicity findings in drug development or postlaunch have resulted in numerous costly late-stage drug development failures and market withdrawals. To mitigate this risk, the pharmaceutical industry has adopted a range of assays to probe the liability of compounds earlier in the drug development process consistent with the mantra “fail faster, fail cheaper”. In the drug discovery process, lead optimization is the ideal phase to screen for safety issues, since at this point failure is relatively cheap and the number of potential compounds for selection (~1000) is greatest. The currently available standard testing models include primary tissue and immortalized cell lines. While immortalized cell lines lend themselves to screening applications (e.g. relatively inexpensive, abundant, easy to handle), the assay end point can be overly simplistic, leading to false positives (i.e. compounds flagged as toxic which are in fact safe) and false negatives (i.e. compounds misidentified as safe when actually toxic). Primary tissue (typically rodent) is often useful for small investigative studies but is not applicable for screening applications, due to both cost and ethical concerns with regard to animal consumption (3Rs). Concerns also persist with the translation of this data to humans due to possible species differences. Consequently, there is increasing demand for more relevant and predictive nonclinical models for in vitro toxicity testing (see Chap. 1, Gintant and Braam).

Since the first descriptions of the differentiation of cardiomyocytes from human embryonic stem cells (hESC) more than a decade ago, there has been much speculation over the utility of these cells for drug safety assessment [1]. Human ESC and human-induced pluripotent stem cell-derived (hiPSC) models, together termed human stem cell-derived (hSC) models, offer an opportunity to provide a more predictive, integrated human model system that is amenable to high-throughput screening in preclinical drug safety assessment. The relative immaturity of these stem cell-derived models is well documented (e.g. [2]), which has led some to question the applicability of hSC-derived models in toxicological studies (i.e. “they are not old enough for drugs”).

Although methods to produce hSC-derived models with more “adultrlike” phenotypes are currently the focus of intensive research efforts, there is considerable data in the literature to suggest a role for the current iteration of this technology. Accordingly, the potential application of hSC-cardiomyocytes (hSC-CMs) in advancing the development of more predictive preclinical cardiac safety assessment is now the subject of extended testing in the regulatory communities. This includes proposals such as the Japan iPS Cardiac Safety Assessment (JiCSA) consortium with the objective to validate hiPSC-CM assay for regulatory purposes and HEST’s Comprehensive in vitro Proarrhythmia Assay (CiPA) which aims to obviate the need for clinical QT studies. The core components of CiPA will include a mathematical (i.e. in silico) model of cardiac muscle electrical activity based on in vitro ion channel data to predict whether new drugs will cause dangerous changes to heart rhythm (i.e. proarrhythmia). A complementary in vitro hSC-CM assay will be integrated into this process with the aim of confirming or casting doubt on the in silico predictions and to broaden the cardiac safety assessment of the candidate drug to include additional proarrhythmic mechanisms not discoverable by the in silico analysis. This is a very promising development for the acceptance
of hSC-derived models in drug discovery and toxicology, and with increased characterization of these hSC-derived models and validation of their associated assays, they will surely grow in prominence.

The majority of this book is focused on differentiated tissues, but we begin the protocol chapters with a high-throughput screen designed to predict embryonic-foetal developmental toxicity using hESCs (Chap. 2, Kameoka and Chiao). One of the first applications of pluripotent stem cells in toxicology was the mouse embryonic stem cell test (mEST), which has been deemed of sufficient value for consideration in regulatory acceptance and submission documents. Here, Kameoka and Chiao describe an improved human embryonic stem cell test (hEST) thus avoiding the extrapolation of responses from animals to humans.

Over half of the chapters in this volume are focused on cardiotoxicity applications. The underlying reason for this bias towards hSC-CM assays is severalfold. Firstly, the cardiomyocyte differentiation process was one of the first to be characterized (hESC-CMs in 2003 and hiPSC-CMs in 2009) and can now be employed to manufacture these cells on an industrial scale suitable for screening applications. Secondly, a human primary model is not readily available (e.g. unlike for hSC-hepatocytes), so there is a large unmet need from the cardiotoxic field. Thirdly, the hSC-CM model has been demonstrated to add value over and above existing model systems (e.g. the antihistamine, terfenadine, produces the expected prolongation of the cardiac action potential in hSC-CMs at clinical relevant concentrations, unlike the false-negative result observed in both canine and porcine Purkinje fibres even at supra-therapeutic concentrations). Finally, cardiotoxicity is one of the most prevalent forms of drug-induced toxicity. Although the recent regulatory guidelines have been successful in reducing the release of proarrhythmic drugs coming to market, there is a general consensus that the extensive focus on a single ion channel (hERG K+ channel) has resulted in an overly high attrition rate (false positives) in drug development, prematurely halting the development of otherwise promising candidate drugs. CiPA proposes that safety studies using multiple ion channel effects (MICE) models, such as hSC-CMs, are likely to be more predictive of clinical drug response where compensatory drug actions on one or more other ion channels mitigate the effects due to hERG blockade.

Manual patch-clamp remains the “gold-standard” for probing drug-induced cardiac ion channel effects (see Chap. 3, Renganathan et al.), and an automated method for increasing assay throughput is also described here (Chap. 4, Obergrussberger et al.). However, manual patch-clamp is very labour intensive, and the difficulties translating automated patch-clamp protocols to hSC-derived models have resulted in the CiPA initiative focusing on analogous emerging electrophysiology-based technologies, namely, multi-electrode array (MEA; see Chap. 5, Millard et al., and Chap. 10 Obergrussberger et al.) and voltage-sensitive optical probes (i.e. genetically encoded voltage indicators, GEVIs (see Chap. 6, Dempsey et al.), and voltage-sensitive dyes, VSDs (see Chap. 7, Kettenhofen)). These techniques present their own strengths and limitations as discussed in the relevant chapters.

Not all cardiotoxicity can be observed by changes in hSC-CM excitability with the aforementioned electrophysiology-based assays. Full and efficient assessment of new drug development liabilities must take a holistic account of both the structural and functional aspects of cell biology. The relative complexity of stem cell-derived models makes them applicable to surveying a wide range of mechanisms whereby a new chemical entity may perturb cell function. Accordingly, this has sparked the development of a diverse range of innovative analytical platforms with the potential to probe previously inaccessible features of cell function (Fig. 1).

Cardiomyocyte excitability (i.e. an action potential) initiates calcium release into the cell and is subsequently removed from the cytoplasm prior to the next contraction event.
Compound-induced effects on these calcium transients can be measured with high-throughput calcium imaging platforms as either the mean response of the hSC-CM monolayer (see Chap. 7, Kettenhofen) or with single-cell resolution (see Chap. 8, Pfeiffer et al., and Chap. 9, George et al.). In turn, this calcium signal is converted into the mechanical contraction of the cardiomyocyte. The physical movement of a layer of beating cardiomyocytes can be continuously monitored with the impedance assay (see Chap. 10, Obergrussberger et al.) or image-based edge detection of a beating spheroid (see Chap. 11, Zuppinger et al.). Measuring this downstream hSC-CM movement can be advantageous since compounds can perturb the cell’s contractile machinery, without impacting its electrophysiology, e.g. the myosin II inhibitor blebbistatin. These platforms, however, do not measure the direct force of contraction, which would be advantageous when screening for unwanted compound-induced changes to the strength of cardiac contractility (i.e. inotropic effects). This requirement is addressed in Chap. 12 (Oleaga et al.), where a novel micro-cantilever-based device is employed to detect perturbations in the force of hSC-CM contractions.

In addition to altering the acute mechanical function of the heart (functional toxicity), cardiotoxicity can also occur due to morphological damage to cardiomyocytes, damage to intracellular organelles, or loss of cardiomyocyte viability (structural toxicity), resulting in cardiomyopathy and heart failure. Methods for screening for compound-induced changes to cell morphology are described in Chap. 13 (Roquemore et al., high-content image analysis, HCA) and Chap. 14 (Kriston-Vizi et al., hypertrophy).
Human SC-neurons similarly offer a novel method of screening for neurotoxins. The MEA assay can be employed to predict neurotoxic risk associated with drugs or compounds present in the environment by monitoring subtle perturbations to the spontaneous firing patterns of hSC-neuronal cultures (e.g. insecticides; see Chap. 15, Kraushaar et al.).

Hepatotoxicity is a major cause of drug attrition, and consequently, in vitro liver-based assays are an integral part of preclinical safety assessments. Primary human hepatocytes are currently the model of choice but are limited by donor-to-donor variability and the short period of time they are functional in culture (i.e. they are unsuitable for assessing the effects of prolonged compound exposure). Human SC-hepatocytes could potentially address these concerns, but their implementation in toxicity assays has been hindered largely due to difficulties in obtaining a mature metabolic phenotype. The expression of CYP3A4, the most abundant cytochrome P450 in the liver, is expressed at lower levels in hSC-hepatocytes compared with primary human hepatocytes. This is of concern since CYP450-dependent formation of toxic metabolites is a cause of drug-induced liver injury. That said, promising hSC-hepatocyte data has emerged from methods attempting to replicate the cellular microstructure of the liver (see Chap. 16, Ware and Khetani).

With the first commercially available hSC-derived models, there was an initial drive to produce >95% “pure” cell models. The rationale behind this approach was that it would be preferable if drug-induced effects observed in biochemical assays could be assigned to a single-cell type. However, recent findings suggest that the presence of stromal (e.g. fibroblast) cells in the culture of interest adds functionality and ultimately increases predictivity. The precise mixing of different highly pure cell types with stromal cells now allows the end user to titre the performance of the model to achieve the desired functionality (see Chap. 11, Zuppinger, for hSC-CMs; and Chap. 16, Ware and Khetani, for hSC-hepatocytes). The advent of technologies that facilitate self-assembling 3D spheroids and self-ordering patterns of cells in 2D culture has helped limit the inevitable increase in assay set-up time and cost associated with the added complexity of these co-culture models.

For the first time, this volume brings together a diverse collection of stem cell-derived model-based toxicity assays, from those routinely used to those deemed to have considerable potential. Key opinion leaders from academia and industry have been invited to contribute their preferred assay protocols with accompanying rationale and example output data. Our goal is to enable adoption of these protocols in laboratories that are interested in entering the field as well as to facilitate the transfer of best practices between laboratories that are already actively pursuing these technologies. The use of stem cell-derived models in safety pharmacology and toxicology is in their infancy, but their potential for improving risk assessment will inevitably drive the development of even more innovative methods to probe toxicity.

Atlanta, GA, USA
Cardiff, UK

References

Atlanta, GA, USA Mike Clements
Cardiff, UK Liz Roquemore
Stem Cell-Derived Models in Toxicology
Clements, M.; Roquemore, L. (Eds.)
2017, XII, 341 p. 124 illus., 108 illus. in color. With online files/update., Hardcover
A product of Humana Press