Contents

1 Introduction and Historical Background ... 1
 1.1 Electrons and the Electron Wavelength 1
 1.2 Electron and Sample Interaction 2
 1.3 Transmission Electron Microscope 5
 1.4 Electron Microdiffraction and STEM 7
 1.5 Analytical TEM .. 9
 1.6 A Brief History of Electron Microdiffraction 12
 1.7 A Note to Students and Lecturers 16
 References .. 17

2 Electron Waves and Wave Propagation ... 19
 2.1 Wave Functions and the Wave Equation 19
 2.2 Quantum Mechanical Wave of Electrons and Schrödinger
 Equation ... 22
 2.3 The Principle of Wave Superposition 24
 2.4 Amplitude and Phase Diagrams ... 25
 2.5 Coherence and Interference ... 25
 2.6 Wave Packets and the Uncertainty Principle 28
 2.7 The Gaussian Wave Packet and Its Propagation 31
 2.8 Temporal Coherence .. 33
 2.9 Spatial Coherence .. 35
 2.10 Electron Refraction and the Refractive Index 38
 2.11 Wave Propagation .. 39
 2.11.1 Huygens–Fresnel Principle 39
 2.11.2 Propagation of Plane Wave and Fresnel Zones 41
 2.11.3 Fresnel Diffraction—The Near-Field Small-Angle
 Approximation ... 43
 2.11.4 Fraunhofer Diffraction—Far-Field Forward
 Diffraction .. 46
 References .. 47
3 The Geometry of Electron Diffraction Patterns

3.1 Bragg’s Law

3.2 Laue Diffraction Condition

3.3 Lattice d-Spacing and Crystal, Real, and Reciprocal Lattices

3.4 Transmission Electron Diffraction Patterns

3.5 Excitation Error

3.6 Kikuchi Lines and Their Geometry (Kinematic)

3.7 Diffraction Pattern Indexing

3.8 One-Dimensional (Systematics) CBED

3.9 Two-Dimensional CBED

3.10 High-Order Laue Zone (HOLZ) Lines

References

4 Kinematical Theory of Electron Diffraction

4.1 First-Order Born Approximation

4.2 Weak-Phase-Object Approximation

4.3 Electron Atomic Scattering

4.4 Kinematical Electron Scattering from a Monoatomic Small Crystal

4.5 Electron Crystal Structure Factors and the Diffracted Intensity from a Small Crystal

4.6 Integrated Diffraction Intensity of a Rotating Crystal

4.7 Atomic Thermal Vibrations and Effect on Electron Scattering

4.8 Electron Structure Factors

4.9 Electron-Optical Potential

References

5 Dynamical Theory of Electron Diffraction for Perfect Crystals

5.1 Many-Beam Theory, Wave-Mechanical Approach

5.2 Howie–Whelan Equations

5.3 Two-Beam Theory

5.4 The Concept of the Dispersion Surface

5.5 Absorption and Its Effects in a First-Order Approximation

5.6 Many-Beam Effects

5.6.1 Three-Beam Theory and Particular Solutions for Centrosymmetric Crystals

5.6.2 Two-Beam Theory with Weak-Beam Effects

5.6.3 Three-Beam Theory—Noncentrosymmetric Crystals and the Phase Problem

5.6.4 Dynamic HOLZ Intensities and Positions. Dispersion Surfaces for HOLZ Lines. How the Bragg Law Depends on Local Composition

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>Probe Formation</td>
<td>241</td>
</tr>
<tr>
<td>10.3</td>
<td>Beam Deflectors and Scanning</td>
<td>246</td>
</tr>
<tr>
<td>10.4</td>
<td>Electron Diffraction Techniques</td>
<td>250</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Selected Area Electron Diffraction (SAED)</td>
<td>250</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Nanoarea Electron Diffraction (NAED) and Nanobeam Diffraction (NBD)</td>
<td>251</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Convergent-Beam Electron Diffraction (CBED)</td>
<td>252</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Large-Angle Methods</td>
<td>255</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Precession Electron Diffraction</td>
<td>259</td>
</tr>
<tr>
<td>10.4.6</td>
<td>Selected Area Diffraction in STEM</td>
<td>261</td>
</tr>
<tr>
<td>10.4.7</td>
<td>Scanning Electron Nanodiffraction</td>
<td>263</td>
</tr>
<tr>
<td>10.5</td>
<td>Specimen Holders and Rotation</td>
<td>266</td>
</tr>
<tr>
<td>10.6</td>
<td>Energy Filtering</td>
<td>269</td>
</tr>
<tr>
<td>10.6.1</td>
<td>First-Order Focusing by Magnetic Sectors</td>
<td>272</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Energy Dispersion</td>
<td>276</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Vertical Focusing Using Fringing Fields</td>
<td>277</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Sector Fields, Paraxial Equations, and Second-Order Aberrations</td>
<td>279</td>
</tr>
<tr>
<td>10.6.5</td>
<td>In-Column Energy Filters</td>
<td>282</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Post-Column Imaging Filters</td>
<td>283</td>
</tr>
<tr>
<td>10.6.7</td>
<td>Isochromaticity, Filter Acceptance, and Distortion</td>
<td>285</td>
</tr>
<tr>
<td>10.7</td>
<td>Radiation Effects and Low-Dose Techniques</td>
<td>288</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>292</td>
</tr>
</tbody>
</table>

11 Crystal Symmetry

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Symmetry Operations and Symmetry Groups</td>
<td>297</td>
</tr>
<tr>
<td>11.2</td>
<td>Point Groups</td>
<td>299</td>
</tr>
<tr>
<td>11.3</td>
<td>Lattice and Space Groups</td>
<td>303</td>
</tr>
<tr>
<td>11.4</td>
<td>Symmetry Operation in Real and Reciprocal Spaces</td>
<td>311</td>
</tr>
<tr>
<td>11.5</td>
<td>Symmetry Determination Using Kinematic Diffraction Intensities</td>
<td>312</td>
</tr>
<tr>
<td>11.6</td>
<td>Symmetry Determination by CBED</td>
<td>315</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Point Symmetry in Dynamic Diffraction</td>
<td>317</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Point Group Determination by CBED</td>
<td>323</td>
</tr>
<tr>
<td>11.7</td>
<td>Bravais Lattice Determination</td>
<td>328</td>
</tr>
<tr>
<td>11.8</td>
<td>Space Groups</td>
<td>329</td>
</tr>
<tr>
<td>11.9</td>
<td>Quantification of CBED Pattern Symmetry and Symmetry Mapping</td>
<td>335</td>
</tr>
<tr>
<td>11.10</td>
<td>Symmetry and Polarization in Ferroelectric Crystals</td>
<td>339</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>343</td>
</tr>
</tbody>
</table>
14.11 HAADF-STEM (Z-Contrast) Imaging 476
14.12 Aberration-Corrected STEM 478
14.13 Three-Dimensional Imaging in STEM 481
14.14 Channeling, Bound States, and Atomic Strings 485
14.15 Image Simulation Using the Multislice Method 489
References ... 496

15 Imaging and Characterization of Crystal Defects 501
15.1 Overview ... 501
15.2 Atomic Displacements, Strain, and Stress 505
15.3 Diffraction Contrast Imaging
 15.3.1 Column Approximation 510
 15.3.2 Thickness Fringes and Bend Contours 513
 15.3.3 Diffraction Contrast from Lattice Defects 515
 15.3.4 Weak-Beam Imaging 525
15.4 Howie-Basinski Equations and the Dynamical Theory of Electron Diffraction from Crystal Defects 529
15.5 Defect Analysis Using LACBED, Defocused CBED, and CBIM 533
15.6 Atomic Structure Determination of Defects from High-Resolution Electron Images 538
 15.6.1 Atomic Structure of Dislocation Cores 539
 15.6.2 Grain Boundaries 546
References ... 550

16 Strain Measurements and Mapping 553
16.1 Local Lattice Parameters and Strain 553
16.2 Electron Beam-Based Strain Measurement Techniques 555
16.3 Limitations of Electron Beam Techniques 559
16.4 Electron Diffraction-Based Strain Measurement Techniques and Applications 560
 16.4.1 Nanobeam Diffraction 560
 16.4.2 Diffraction Geometry 560
 16.4.3 Strain Mapping 562
 16.4.4 Convergent Beam Electron Diffraction (CBED) ... 565
 16.4.5 3D Strain and Deformation Gradient Matrix 567
 16.4.6 HOLZ Line Splitting from 3D Strain 568
16.5 Electron Imaging-Based Strain Measurement Techniques and Applications 570
 16.5.1 Strain Mapping Using GPA 570
 16.5.2 STEM and Its Application for Strain Measurement 572
16.6 Off-Axis Electron Holography 574
References ... 577
17 Structure of Nanocrystals, Nanoparticles, and Nanotubes
17.1 Nanostructures and Nanoscale Phenomena
17.2 Structure of Nanocrystals
17.2.1 Nanocrystal Equilibrium and Kinetic Shapes
17.2.2 Nanocrystal Facet Determination
17.2.3 Identification of Planar Faults Using Coherent CBED
17.2.4 Nanocrystal Surface Reconstruction
17.2.5 Surface Atoms of a Twinned Nanocrystal
17.2.6 The Equilibrium Shape of Supported Nanocrystals
17.2.7 Triple Junctions and Line Tension
17.2.8 Interaction with Surface Steps
17.3 Structure of Nanoclusters and Nanoparticles
17.3.1 Diffraction by Free Clusters
17.3.2 Structure and Energetics of Metallic Nanoparticles
17.4 Carbon Nanostructures
17.4.1 Carbon Allotropes and Bond Lengths
17.4.2 Electron Diffraction of Carbon Nanotubes
17.4.3 Chirality and Diameters of Single-Walled Carbon Nanotubes
17.4.4 Structure of Multiwalled Carbon Nanotubes
17.4.5 Defects in Graphene and Carbon Nanotubes
17.4.6 Van der Waals Forces and Molecular Interactions
References
Appendix A: Useful Relationships in Electron Diffraction
Appendix B: Electron Wavelengths, Physical Constants, and Atomic Scattering Factors
Appendix C: Crystallographic Data
Appendix D: Indexed Diffraction Patterns with HOLZ
Appendix E: Fourier Transforms, δ-Function, and Convolution
Appendix F: Crystal Structure Data, Mean Inelastic Free Path, and Mean Potential
Author Index
Subject Index
Advanced Transmission Electron Microscopy
Imaging and Diffraction in Nanoscience
Zuo, J.M.; Spence, J.C.H.
2017, XXVI, 729 p. 310 illus., 218 illus. in color.,
Hardcover
ISBN: 978-1-4939-6605-9