Contents

Preface ... v
Contributors ... xv

PART I NATIVE TAU PROTEIN: CONFORMATIONAL STUDIES
 AND TUBULIN INTERACTIONS

1 Conformational Dynamics of Intracellular Tau Protein Revealed
 by CD and SAXS .. 3
 Nalini Vijay Gorantla, Alexander V. Shkumatov,
 and Subashchandrabose Chinnathambi

2 Global Conformation of Tau Protein Mapped by Raman Spectroscopy 21
 Nalini Vijay Gorantla, Puneet Khandelwal, Pankaj Poddar,
 and Subashchandrabose Chinnathambi

3 Molecular Dynamics Simulation of Tau Peptides for the Investigation
 of Conformational Changes Induced by Specific Phosphorylation Patterns ... 33
 Neha S. Gandhi, Predrag Kukic, Guy Lippens, and Ricardo L. Mancera

4 Tau Interaction with Tubulin and Microtubules: From Purified
 Proteins to Cells ... 61
 Tiphany De Bessa, Gilles Breuzard, Diane Allegro, François Devred,
 Vincent Peyrot, and Pascale Barbier

PART II IN VITRO SELF-ASSOCIATION OF TAU PROTEIN:
 OLIGOMER AND FIBRIL FORMATION

5 X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound
 to Small-Molecule Ligands ... 89
 Einav Tayeb-Fligelman and Meytal Landau

6 Detection and Quantification Methods for Fibrillar Products
 of In Vitro Tau Aggregation Assays ... 101
 Niki Nanavaty, Lauren Lin, Samantha H. Hinckley, and Jeff Kuret

7 Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance
 Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM)
 for Study of the Kinetics of Formation and Structural Characterization
 of Tau Fibrils .. 113
 Gayathri Ramachandran

8 Assays for the Screening and Characterization
 of Tau Aggregation Inhibitors .. 129
 Janet E. Rickard, David Horsley, Claude M. Wischik,
 and Charles R. Harrington
9 Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo .. 141
Julia E. Gerson, Urmi Sengupta, and Rakez Kayed

PART III Tau Post-Translational Modifications

10 Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer’s Disease Brain .. 161
Stefani N. Thomas and Austin J. Yang

11 The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein 179
Haoling Qi, Clément Despres, Sudhakaran Prabakaran, François-Xavier Cantrelle, Béatrice Chambraud, Jeremy Gunawardena, Guy Lippens, Caroline Smet-Nocca, and Isabelle Landrieu

12 Tag-Free Semi-Synthesis of the Tau Protein 215
Oliver Reimann, Caroline Smet-Nocca, and Christian P.R. Hackenberger

13 Production of O-GlcNAc Modified Recombinant Tau in E. coli and Detection of Ser400 O-GlcNAc Tau In Vivo ... 237
Scott A. Yuzwa and David J. Vocadlo

PART IV Detecting Tau Proteins, Their Modifications, Mutations and Interacting Partners

14 Two-Dimensional Electrophoresis Protocols to Analyze the Microtubule-Associated Tau Proteins from Several Biological Sources 251
Nicolas Sergeant, Francisco-Jose Fernandez-Gomez, Helene Obriot, Sabiba Eddarkaoui, Valérie Buée-Scherrrer, and Luc Buée

15 A Simple Method to Avoid Nonspecific Signal When Using Monoclonal Anti-Tau Antibodies in Western Blotting of Mouse Brain Proteins 263
Franck R. Petry, Samantha B. Nicholls, Sébastien S. Hébert, and Emmanuel Planel

16 Flow Cytometry Analysis and Quantitative Characterization of Tau in Synaptosomes from Alzheimer’s Disease Brains 273
Karen Hoppens Gylys and Tina Bilousova

17 In Vivo Microdialysis of Brain Interstitial Fluid for the Determination of Extracellular Tau Levels ... 285
Kaoru Yamada

18 Proximity Ligation Assay: A Tool to Study Endogenous Interactions Between Tau and Its Neuronal Partners .. 297
Alexis Bretteville, Florie Demiautte, and Julien Chapuis

19 Finding MAPT Mutations in Frontotemporal Dementia and Other Tauopathies ... 307
Carol Dobson-Stone and John B. J. Kwok
Part V Cellular and In Vivo Models of Tau Physiopathology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Tracking Tau in Neurons: How to Grow, Fix, and Stain Primary Neurons for the Investigation of Tau in All Developmental Stages</td>
<td>Hans Zempel and Eva-Maria Mandelkow</td>
<td>327</td>
</tr>
<tr>
<td>21</td>
<td>Tracking Tau in Neurons: How to Transfect and Track Exogenous Tau into Primary Neurons</td>
<td>Hans Zempel, Julia Luedtke, and Eva-Maria Mandelkow</td>
<td>335</td>
</tr>
<tr>
<td>22</td>
<td>Image-Based Analysis of Intracellular Tau Aggregation by Using Tau-BiFC Cell Model</td>
<td>Sungsu Lim, Dohee Kim, Dong Jin Kim, and Yun Kyung Kim</td>
<td>341</td>
</tr>
<tr>
<td>23</td>
<td>FRET and Flow Cytometry Assays to Measure Proteopathic Seeding Activity in Biological Samples</td>
<td>Jennifer L. Furman and Marc I. Diamond</td>
<td>349</td>
</tr>
<tr>
<td>24</td>
<td>In Vivo Imaging of Tau Aggregates in the Mouse Retina</td>
<td>Christian Schön and Jochen Herms</td>
<td>361</td>
</tr>
<tr>
<td>25</td>
<td>In Vivo Hyperthermic Stress Model: An Easy Tool to Study the Effects of Oxidative Stress on Neuronal Tau Functionality in Mouse Brain</td>
<td>Alban Chauderlier, Lucie Delattre, Luc Buée, and Marie-Christine Galas</td>
<td>369</td>
</tr>
<tr>
<td>26</td>
<td>Identification of Tau Toxicity Modifiers in the Drosophila Eye</td>
<td>Pierre Dourlen</td>
<td>375</td>
</tr>
<tr>
<td>27</td>
<td>Regulation of Neurotrophic Factors During Pathogenic Tau-Aggregation: A Detailed Protocol for Double-Labeling mRNA by In Situ Hybridization and Protein Epitopes by Immunohistochemistry</td>
<td>Katharina Schindowski-Zimmermann</td>
<td>391</td>
</tr>
<tr>
<td>28</td>
<td>Pin1 Knockout Mice: A Model for the Study of Tau Pathology in Alzheimer’s Disease</td>
<td>Asami Kondo, Onder Albayram, Xiao Zhen Zhou, and Kun Ping Lu</td>
<td>415</td>
</tr>
</tbody>
</table>

Index | 427 |
Tau Protein
Methods and Protocols
Smet-Nocca, C. (Ed.)
2017, XVIII, 432 p. 83 illus., 64 illus. in color., Hardcover
ISBN: 978-1-4939-6596-0
A product of Humana Press